


Joining the Dots

Statistics for spatial point patterns

Adrian Baddeley
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LE CHOLERA
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John Snow’s map of cholera in Soho, London, 1854
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Cholera in Soho 1854
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Gold in Western Australia
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Galaxy survey
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Tree deaths in a groundwater catchment

tree death

I_I

water bore
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Common elements

m spatial locations of ‘events’/ ‘things’

spatial point pattern

m additional data

spatial covariates

B we want to investigate

— dependence of points on covariate

— dependence between points
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Completely random point pattern

What would
a completely random pattern

look like?

9/96



Completely random point pattern
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Terminology: Point process

A point process Is a random mechanism that generates
a random pattern of points.
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Terminology: Point process

A point process Is any random mechanism that generates
a random pattern of points.
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Completely random point process
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Completely random point process
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Completely random point process
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Poisson distribution (1837)
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Poisson point process

The canonical model for a completely random pattern of points is

the Poisson point process

Point locations are independent of each other; different areas of the pattern are

Independent of each other.
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Terminology: Intensity

The intensity A of a point process is

the expected (mean) number of points per unit area.
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Intensity could be a spatially-varying function )\(u) of location wu.
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Gold in Western Australia
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Problem 1: Intensity

Investigate whether the intensity A depends on

the spatial covariate Z:

Mu) = f(Z(u))
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Terminology: Interaction

Interpoint interaction In a point process Iis stochastic dependence between the

locations of the points.
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Problem 2: Interaction

Detect and describe interaction between the
points of a point process, after allowing for

variation in intensity.
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Gold in Western Australia
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Problem 1: Intensity

Investigate whether the intensity A depends on

the spatial covariate Z:

Mu) = f(Z(u))
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Regression
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Linear regression
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10 15 20 25 30
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Normal distribution (1809)

0.2 0.3 0.4

Probability density

0.1

0.0
|

The standard method for linear regression (‘least squares’) is appropriate when the

errors around the line are Normally distributed.

23 /96



Poisson distribution

Probability
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Poisson regression

25 /96



Poisson regression
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Generalized Linear Models

The theory of “generalized linear models” embraces
m linear regression

m Poisson regression

This unification was achieved in 1980
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Poisson regression

Number of cyclones
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Severe cyclones
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regression on

El Nino
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Poisson regression
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Poisson regression
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Gold deposits
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Pixel Logistic Regression

Proposed by statistician John Tukey 1972, developed by geologist Frits Agterberg

m Divide survey region into pixels

m Set pixel value to 1 if it contains data points, otherwise O
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m Analyse 0/1 pixel values using logistic regression
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Logistic regression

Logistic regression

p
10g1— = By + Bix
— P
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Gold deposits

Logistic regression analysis

0.08

0.06

0.04

0.02

Predicted probability of a gold deposit

in each 2 X 2 km pixel

Logistic regression of
y = presence/absence of gold
on

x = distance to nearest fault
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Claims about pixel logistic regression

m “logistic regression is a nonparametric technique”

(i.e. does not make assumptions about the relation between y and x)
m results depend on choice of pixel size
m “difficult to interpret the fitted parameters”

m small pixels = numerical problems
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Those who ignore statistics

are doomed to reinvent It.
— B. Efron
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Effect of pixel size

m results using different pixel sizes are

Baddeley et al, Spatial logistic regression and change-of-support for Poisson point

processes. Electronic Journal of Statistics 4 (2010)
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Very small pixels

For very small pixel size, pixel logistic regression is equivalent to assuming a
Poisson point process with loglinear intensity

Au) = exp(Bo + B1.X (u))

where X (u) is the covariate value at spatial location w.

Warton & Shepherd, Poisson point process models solve the “pseudo-absence problem” for

presence-only data in ecology. Annals of Applied Statistics 4 (2010)

Baddeley et al, Spatial logistic regression and change-of-support for Poisson point

processes. Electronic Journal of Statistics 4 (2010)
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Gold deposits

Loglinear Poisson point process model

0.02

0.015

Predicted intensity of gold deposits

(number of deposits per km?)

0.01

0.005

39/96



Predictions about a Poisson point process

For a Poisson point process with given parameters, it is straightforward to predict

m expected number of deposits in a given area
m probability of exactly n deposits in a given area
m probability of finding at least one deposit within z km of a given place

m etc
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20th Century statistical methodology for point patterns

Until 1990 it was widely believed that mainstream statistical methods
(‘maximum likelihood’) were “infeasible” for spatial point patterns,

If Interaction is present.

Instead, new methods were developed
m Markov chain Monte Carlo
m composite likelihood

B moment methods

411796



20th Century statistical methodology for point patterns

Moment methods: Ripley’s K function
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20th Century statistical methodology for point patterns

Critique
N
Inflexible, slow, temperamental
N
e.g. “How confident are you that there is gold in this region?”
[

Doesn’t provide standard statistical tools e.g. confidence interval,

goodness-of-fit, leverage, influence, residuals, partial residuals
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Statistical tools
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Statistical methodology
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Linear regression
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Linear regression

44 46 48 50 52 54 56

10 15 20 25 30
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Linear regression: confidence interval
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Linear regression: prediction interval

44 46 48 50 52 54 56
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Nonparametric regression
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Linear regression diagnostics: residuals

residual

10 15 20 25 30
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Linear regression diagnostics: leverage
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Linear regression diagnostics: influence
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Gold deposits

Loglinear Poisson point process model

Predicted intensity of gold deposits

(number of deposits per km?)

T
(0] 0.005 0.01 0.015 0.02
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Validating the model

Logistic regression
Mu) = exp(By + Bi.X (u))

What if the relationship is not log-linear?

How do we assess the evidence for/against a loglinear relationship?
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Diagnostics for point process models

Extend Tukey’s idea to diagnostics

1. write down a diagnostic for logistic regression

(rescale appropriately for pixel size)

=

2. take very small pixels

3. interpret as a diagnostic for point processes

Using this bridge, existing diagnostic tools from mainstream statistical science can

be carried over to spatial point processes
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Diagnostics for point process models

1. residuals
2. leverage
3. influence
4. partial residual

5. nonparametric smooth
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1. Residuals

In linear regression, if 3, is the fitted mean for observation ;, the residuals are
ri =Y — Ui

The residuals should not show a systematic pattern. If they do, this suggests that the

relationship between x and y has not been correctly modelled.
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Gold deposits: smoothed Pearson residuals

Baddeley et al Residual analysis for spatial point processes. J. Royal Statist. Soc. B (2005)
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Diagnostics for point process models

1. residuals
2. leverage
3. influence
4. partial residual

5. nonparametric smooth
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2. Leverage

In linear regression of y on x,
m observed response: y;
m fitted response: y;
m |everage
_dy;
dy;

measures how strongly the fitted value 7; depends on the observed value ;.

hi

Large values of leverage are associated with the observations which, because of

their covariate value, have a potentially strong influence on the fitted model.
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Leverage for Poisson point process

For a Poisson point process with loglinear intensity

Ag(u) = exp(B'X (u))

the leverage function is

Baddeley, Chang & Song, Leverage and influence diagnostics for spatial point processes.

Scandinavian Journal of Statistics (2012)
62 /96



Gold deposits: leverage

Leverage for fit
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Diagnostics Poisson point process models

1. residuals
2. leverage
3. Influence
4. partial residual

5. nonparametric smooth
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3. Influence

In a linear model (etc), the influence of the 1th observation is

A

2 L)
P L(6s)

A

where L is the likelihood, @ is the estimate of the parameter @ using all the data,
é(_i) is the estimate using all the data except the ith observation, and p is the

number of parameters.

Large values of influence are associated with the observations which,
because of their atypical response and high leverage, actually had a

strong effect on the fitted model.
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Influence for loglinear Poisson model

For the loglinear Poisson point process, the influence of data point s; is

1
m; — —X(SZ‘)IBA—1X(SZ')T.
p

Baddeley, Chang & Song, Leverage and influence diagnostics for spatial point processes.

Scandinavian Journal of Statistics (2012)
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Gold deposits: influence

Influence for fit
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Gold deposits: influence

Influence for fit
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Gold deposits: influence

Influence for fit

Large circle at left
identifies an outlier

or anomaly
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Diagnostics for point process models

1. residuals
2. leverage
3. influence
4. partial residual

5. nonparametric smooth
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4. Partial residuals

In linear regression

y=ar+b

the partial residual (aka component-plus-residual) is

[A?ilfz' X Yi A—Qyz
o

T, —

A smoothed plot of r; against x; gives an estimate of the true relationship between x

and y.
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Partial residuals for spatial point process model

For loglinear Poisson point process, the partial residuals are the values of X at the

data points s; with weights 1/A(s;).

Baddeley, Chang, Song & Turner, Residual diagnostics for covariate effects in spatial point

process models. J. Computational and Graphical Statistics (2012)
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Gold deposits: partial residual plot
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Diagnostics for point process models

1. residuals
2. leverage
3. influence
4. partial residual

5. nonparametric smooth
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5. Nonparametric estimate of covariate effect

Suppose that, instead of the loglinear model, the point process intensity depends on

covariate X through
Au) = p(X(u))

where the function p is to be estimated.

Estimate p by a kernel smoothing technique

Baddeley, Chang, Song & Turner, Nonparametric estimation of the dependence of a spatial

point process on a spatial covariate. Statistics and its Interface 5 (2012)
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Gold deposits: smoothed effect estimate
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Tree deaths in Perth’s groundwater catchment

+ tree death

water bore
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Spatially varying death rate

ee deaths per km?
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Density of live trees

[
0.025

Compiled from 300,000 tree locations

(detected from aerial imagery)

0.02

Y.M. Chang

0.015
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Spatially varying death risk
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Covariate data

Terrain elevation Depth to water table
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Effect of depth to water table

Nonparametric estimate
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Effect of terrain elevation, groundwater recharge

Partial residuals
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Coming Soon ...
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Local Likelihood

Copper deposits and lineaments, Queensland
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1.5

0.5

Local Poisson loglinear model
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Local composite likelihood

Region Il °

California Redwood saplings
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Local composite likelihood

Local Gibbs point process model
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Local composite likelihood

Local Neyman-Scott cluster process model
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Point patterns on linear networks

Road accidents in Geelong 2010-2012

G. McSwiggan
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Point patterns on linear networks

Chicago street crimes
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Point patterns on linear networks

Spider webs on a brick wall
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Point patterns on linear networks

Dendritic spines
) \r‘ _\“\

Kosic Lab, UCSB
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Point patterns on linear networks

Dendritic spines

Kosic Lab, UCSB

A. Jammalamadaka
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Cholera in Soho 1854
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Cholera in Soho 1854




Cholera in Soho 1854
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Cholera in Soho 1854
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