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Abstract

This chapter contains an introduction to rotational integral geometry that is the
key tool in local stereological procedures for estimating quantitative properties of
spatial structures. In rotational integral geometry, focus is on integrals of geometric
functionals with respect to rotation invariant measures. Rotational integrals of in-
trinsic volumes are studied. The opposite problem of expressing intrinsic volumes as
rotational integrals is also considered. It is shown how to express intrinsic volumes as
integrals with respect to geometric functionals defined on lower dimensional linear
subspaces. Rotational integral geometry of Minkowski tensors is shortly discussed as
well as a principal rotational formula. These tools are then applied in local stereology
leading to unbiased stereological estimators of mean intrinsic volumes for isotropic
random sets. At the end of the chapter, emphasis is put on how these procedures
can be implemented when automatic image analysis is available. Computational
procedures play an increasingly important role in the stereological analysis of spatial
structures and a new sub-discipline, computational stereology, is emarging. Although
the chapter is self-contained, it can also be read as a continuation of Kiderlen (2012).
In particular, the notation used in Kiderlen (2012) has been adopted in the majority
of cases.

1 Rotational integral geometry

Let Kdconv denote the set of convex bodies (compact and convex sets) in Rd . In this chapter,
we will consider geometric identities of the following general form

∫
α(K ∩L)dL = β(K), (1.1)

where α,β are geometrical functionals to be defined more precisely below, K ∈ Kdconv is
the spatial object of interest, L is the probe (line, plane, sampling window, ...) and dL is
the element of a rotation invariant measure on the set of probes L. We will mainly focus
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on geometric identities for k-dimensional planes L in Rd passing through the origin O
(L is a k-dimensional linear subspace in Rd , called a k-subspace in the following). The
choice of origin is an important question in applications; in biomedicine, K is typically a
cell and O is the nucleus or a nucleolus of the cell.

1.1 Rotational integrals of intrinsic volumes

In this section, rotational integrals of intrinsic volumes will be studied. So α is an intrinsic
volume, determined on the section, and the aim is to find the corresponding β. As we
shall see, β involves weighted curvature measures.

Recall that for K ∈Kdconv, we can define d + 1 intrinsic volumes Vk(K), k = 0, . . . ,d. We
have

Vd(K) = volume (Lebesgue measure) of K

Vd−1(K) = 2−1 × surface area of K

V0(K) = the Euler-Poincaré characteristic of K

For non-empty K ∈Kdconv, V0 is thus identically equal to 1. The intrinsic volumes can be
extended to larger set classes for which V0 contains interesting topological information.

The intrinsic volumes are examples of real-valued valuations on Rd . They are motion
invariant and continuous with respect to the Hausdorff metric. Recall that a real-valued
valuation on Rd is a mapping f : Kdconv→ R satisfying

f (K ∪M) + f (K ∩M) = f (K) + f (M),

whenever K,M,K ∪M ∈Kdconv. Hadwiger’s famous characterization theorem states that
any motion invariant, continuous valuation is a linear combination of intrinsic volumes.
For more details, see Kiderlen (2012); Schneider and Weil (2008) and references therein.

For k = 0, . . . ,d − 1, Vk(K) can be expressed as integral with respect to principal cur-
vatures. Assume for simplicity of presentation that K is a compact d-dimensional C2

manifold with boundary. Then, for k = 0, . . . ,d − 1,

Vk(K) =
1

ωd−k

∫

∂K

∑

|I |=d−1−k

∏

i∈I
κi(x)Hd−1(dx), (1.2)

where ωk = 2πk/2/Γ (k/2) is the surface area of the unit sphere in Rk , ∂K is the boundary of
K , the sum runs over all subsets {1, . . . ,d − 1} with d − 1− k elements, κi(x), i = 1, . . . ,d − 1,
are the principal curvatures at x ∈ ∂K and Hd−1 is (d − 1)-dimensional Hausdorff measure.
For k = d − 1, (1.2) reduces to Vd−1(K) = 1

2Hd−1(∂K).
The classical Crofton formula relates intrinsic volumes defined on k-dimensional

affine subspaces to intrinsic volumes of the original set
∫

Edk
Vj(K ∩E)dE = ck,d−k+j

j,d Vd−k+j(K), 0 ≤ j ≤ k ≤ d, (1.3)
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cf. Kiderlen (2012, Theorem 2.4). Here, Edk is the set of k-dimensional affine subspaces
in Rd , called k-flats in the following. Any E ∈ Edk is of the form E = x + L, where L is the
parallel k-subspace and x ∈ L⊥. Furthermore, dE = νd−k(dx)dL, where dL is the element
of the rotation invariant probability measure on the set Ldk of k-subspaces in Rd and νd−k
is the Lebesgue measure on L⊥. The explicit form of the known constant is

c
k,d−k+j
j,d =

k!τk (d − k + j)!τd−k+j

j!τj d!τd
,

where τd = πd/2/Γ (1 + d
2 ) is the volume of the unit ball in Rd , cf. Kiderlen (2012, (2.3)).

Note that for j = k, the Crofton formula relates Lebesgue measure on sections K ∩E to
Lebesgue measure of the original set K . Likewise, for j = k − 1, sectional surface area is
related to the surface area of K .

Note that in order to ease the reading of this chapter as a continuation of Kiderlen
(2012), we use above and throughout this chapter the normalized version of the rotation
invariant measure on Ldk which is a probability measure.

In rotational integral geometry, the interest is instead in rotational averages of intrinsic
volumes ∫

Ldk
Vj(K ∩L)dL =?, 0 ≤ j ≤ k ≤ d. (1.4)

These integrals are valuations on Rd . They are rotation invariant, but typically not
translation invariant.

Let us first consider the case j = k. This is the simplest case where Lebesgue measure
is measured on the section. For k = 1, . . . ,d, we have

∫

Ldk
Vk(K ∩L)dL =

Γ (d/2)
π(d−k)/2Γ (k/2)

∫

K
|x|−(d−k)νd(dx). (1.5)

The proof of this result is based on the Blaschke-Petkantschin formula. This formula exists
in many versions. Generally, the Blaschke-Petkantschin formula concerns a decomposition
of a product of Hausdorff measures, see Jensen (1998, Theorem 5.6). Here, we only need
the decomposition of a single copy of Lebesgue measure. In this case, the Blaschke-
Petkantschin formula takes the following form

∫

Rd
f (x)νd(dx) =

π(d−k)/2Γ (k/2)
Γ (d/2)

∫

Ldk

∫

L
|x|d−k νk(dx)dL,

for any non-negative measurable function f on Rd , see Jensen (1998, Proposition 4.5). For
k = 1 (line sections), the Blaschke-Petkantschin formula is simply polar decomposition
in Rd , see also Kiderlen (2012, Section 2.1.2). Note that for j = k = 0, (1.4) reduces to

∫

Ld0
V0(K ∩L)dL = 1K (O).

Example 1.1. For d = 3 and k = 2, we get, cf. (1.5),
∫

L3
2

area(K ∩L)dL = β(K),
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where

β(K) =
1
2

∫

K
|x|−1ν3(dx). �

The situation is much more complicated, when j < k. Assume for simplicity of the
presentation that K is a compact d−dimensional C2 manifold with boundary. Then, under
mild regularity conditions,

∫

Ldk
Vj(K ∩L)dL =

∫

∂K
|x|−(d−k)

∑

|I |=k−1−j
wI,k,j(x)

∏

i∈I
κi(x)Hd−1(dx), (1.6)

0 ≤ j < k ≤ d. The sum runs over all subsets of {1, . . . ,d − 1} with k − 1 − j elements and
the wI,k,js are weight functions involving hypergeometric functions. In 2008, this result
was published by Jensen and Rataj (2008). Here, the result was established for the more
general set class consisting of sets with positive reach. The proof involves extensive
geometric measure theory.

Very recently, the explicit form of the weight functions wI,k,j has been published
(Auneau-Cognacq et al., 2012). If K is a ball centred at the origin O, then the wI,k,js
are constant and |x| is also constant when x ∈ ∂K . We are back to the classical Crofton
formula (1.3). Generally, the wI,k,js depend on the angle between x and the outer unit
normal u(x) at x ∈ ∂K , and the angle between x and the subspace spanned by the principal
directions with indices outside I . In Auneau-Cognacq et al. (2012), it is shown for j < k
that ∫

Ldk
Vj(K ∩L)dL

can also be expressed as an integral with respect to flag measures.
The special case j = k − 1 gives rise to some simplifications of (1.6), see e.g. Jensen and

Rataj (2008, Section 4.1). When j = k −1, I = ∅, the sum on the right-hand side of (1.6) has
only one element and the curvature product disappears. The following result holds for
the rotational average of the sectional surface area

∫

Ldk
Vk−1(K ∩L)dL

=
1
2

Γ (d/2)
π(d−k)/2Γ (k/2)

∫

∂K
|x|−(d−k)F− 1

2 ,
d−k

2 ; d−1
2

(sin2β(x))Hd−1(dx), (1.7)

where F is a hypergeometric function and β(x) is the angle between x ∈ ∂K and the unique
outer unit normal u(x) to the boundary at x ∈ ∂K (unique because of the smoothness
condition).

The class of hypergeometric functions is parametrized by three parameters and has
well-known series expansions as well as integral representations. In particular, we have
for 0 < β < γ the following integral representation

Fα,β;γ (z) =
1

B(β,γ − β)

∫ 1

0
(1− zy)−αyβ−1(1− y)γ−β−1dy. (1.8)
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Example 1.2. For d = 3 and k = 2, we find, using (1.8),

F− 1
2 ,
d−k

2 ; d−1
2

(sin2β(x)) =
2
π

∫ π/2

0
(1− sin2β(x)sin2ϕ)1/2dϕ

=
2
π
E(|sinβ(x)|,π/2),

where E is the elliptic integral of the second kind. We find, cf. (1.7),
∫

L3
2

length(∂K ∩L)dL = β(K),

where

β(K) =
1
π

∫

∂K
|x|−1E(|sinβ(x)|,π/2)H2(dx).

�

1.2 Intrinsic volumes as rotational integrals

In this section, we want to study the ’opposite/inverse’ problem of determining the
measurement in the section with rotational integral equal to a given intrinsic volume.
So now β is an intrinsic volume and the aim is to find α such that (1.1) is satisfied. This
problem has been studied in detail in Auneau and Jensen (2010); Gual-Arnau et al. (2010).

More specifically, we want to find a functional αk,j , satisfying the following rotational
integral equation ∫

Ldk
αk,j(K ∩L)dL = Vd−k+j(K), (1.9)

k = 1, . . . ,d, j = 1, . . . , k. From an applied point of view, this question is more interesting
than the one studied in the previous section, because αk,j is then the measurement to be
performed in the section. This measurement has a rotational average equal to the intrinsic
volume considered and can be used to estimate the intrinsic volume in question. Further
details will be given in Section 2.

Let us first consider a simple example in R2 with d = 2 and j = k = 1. The aim is then
to find a functional α1,1 such that

∫

L2
1

α1,1(K ∩L)dL = area(K). (1.10)

It is easy to find a solution to this problem. Consider an infinitesimal neighbourhood of
x ∈ X of area ν2(dx). Transforming to polar coordinates in R2, x = (r cosθ,r sinθ), gives us
the following decomposition of area measure in the plane

ν2(dx) = |r |dr dθ, (1.11)

r ∈ R, θ ∈ [0,π). Identifying θ with the line L passing through the origin, having an angle
θ with a fixed axis, we have dL = dθ/π, and (1.11) can equivalently be expressed as

ν2(dx) = π |x|ν1(dx)dL.
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It follows that

α1,1(K ∩L) = π
∫

K∩L
|x|ν1(dx)

is a solution to (1.10).
A solution to the general problem of finding a functional αk,j satisfying (1.9) can be

derived by combining the classical Crofton formula with another version of the Blaschke-
Petkantschin formula, see Kiderlen (2012, Theorem 2.7),

∫

Edr
f (E)dE =

ωd−r
ωk−r

∫

Ldk

∫

ELr
f (E)d(O,E)d−k dEdL, (1.12)

where 1 ≤ r < k ≤ d − 1, f is a non-negative measurable function on Edr and ELr is the set of
r-flats contained in L ∈ Ldk .

The general solution to (1.9) is given in the proposition below.

Proposition 1.3 (Auneau and Jensen (2010); Gual-Arnau et al. (2010)). Let M ∈KLconv be a
compact and convex subset of L ∈ Ldk . For k = 1, . . . ,d, j = 1, . . . , k, the functional

αk,j(M) =
ωd−k+1

ω1
(ck−1,d−k+j
j−1,d )−1

∫

ELk−1

d(O,E)d−kVj−1(M ∩E)dE

is a solution to (1.9).

Proof. Using the Blaschke-Petkantschin formula (1.12), we find
∫

Ldk
αk,j(K ∩L)dL

=
ωd−k+1

ω1
(ck−1,d−k+j
j−1,d )−1

∫

Ldk

∫

ELk−1

d(O,E)d−kVj−1(K ∩L∩E)dEdL

=
ωd−k+1

ω1
(ck−1,d−k+j
j−1,d )−1

∫

Ldk

∫

ELk−1

d(O,E)d−kVj−1(K ∩E)dEdL

= (ck−1,d−k+j
j−1,d )−1

∫

Edk−1

Vj−1(K ∩E)dE

= Vd−k+j(K).

At the last equality sign, we have used the Crofton formula (1.3).

Example 1.4. For d = 3 and j = k = 2, we get
∫

L3
2

α2,2(K ∩L)dL = ν3(K),

where

α2,2(K ∩L) = π
∫

EL1
d(O,E) length(K ∩E)dE.

Furthermore, for d = 3, j = 1 and k = 2, we get
∫

L3
2

α2,1(K ∩L)dL = 1
2 surface area(K),

6



where

α2,1(K ∩L) = 2π
∫

EL1
d(O,E)1{K ∩E , ∅}dE.

It was shown in Auneau and Jensen (2010) that for j = k and j = k−1 the functional αk,j
can be considerably simplified and given in more explicit form. The result is presented in
the corollary below.

Corollary 1.5. Let the situation be as in Proposition 1.3. Suppose that M ∈KLconv is a compact
k-dimensional C2 manifold with boundary. Then,

αk,k(M) =
π(d−k)/2Γ (k/2)

Γ (d/2)

∫

M
|z|d−k νk(dz)

and

αk,k−1(M) =
1
2
π(d−k)/2Γ (k/2)

Γ (d/2)

∫

∂M
|z|d−kF− 1

2 ,− d−k2 ; k−1
2

(sin2(β(z)))Hk−1(dz),

where β(z) is the angle between z ∈ ∂M and the unique outer unit normal u(z) to the boundary
of M at z ∈ ∂M.

Proof. Using that E = L+ x, where x ∈ L⊥, we find

Γ ((d − k + 1)/2)
π(d−k+1)/2

αk,k(M) =
∫

ELk−1

d(O,E)d−kVk−1(M ∩E)dE

=
∫

Lkk−1

∫

L⊥
|x|d−kVk−1(M ∩ (L+ x))ν1(dx)dL

=
∫

Lkk−1

∫

L⊥

∫

M∩(L+x)
|x|d−k νk−1(dy)ν1(dx)dL

=
∫

Lkk−1

∫

M
|p(z|L⊥)|d−k νk(dz)dL

=
∫

M
|z|d−k

(∫

Lkk−1

|p(z|L⊥)|d−k
|z|d−k dL

)
νk(dz)

=
∫

M
|z|d−k

( 1

B(1
2 ,
k−1

2 )

∫ 1

0
y
d−k−1

2 (1− y)
k−3

2 dy
)
νk(dz).

At the last equality sign, we have used Jensen (1998, Proposition 3.9). The result concern-
ing αk,k now follows immediately.

The result concerning αk,k−1 is more difficult to show. The details can be found in
Auneau and Jensen (2010). Let us here just give a proof sketch. In Auneau and Jensen
(2010), it is shown that

Γ ((d − k + 1)/2)
π(d−k+1)/2

· ck−1,d−1
k−2,d ·αk,k−1(M) =

1
2

∫

∂M

∫

Lkk−1

|p(u(z)|L)| |p(z|L⊥)|d−k dLHk−1(dz).
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The result now follows if we use the following result proved in Auneau and Jensen (2010).
For x and y unit vectors in L ∈ Ldk and non-negative integers n,m, we have

∫

Lkk−1

|p(x|L)|m |p(y|L⊥)|ndL =
ωk−1

ωk
B
(n+ 1

2
,
m+ k − 1

2

)
F−m2 ,− n2 ; k−1

2
(sin2∠(x,y)).

In this section we have found a functional αk,j satisfying the rotational integral equa-
tion (1.9). A natural question to ask is whether αk,j is unique. If a solution is seeked
among rotation invariant functionals only, this is indeed the case for j = k = 1, cf. Kiderlen
and Jensen (2013). It is an open question whether uniqueness holds for general j and k.

1.3 Rotational integral geometry of Minkowski tensors

In this section, we will extend the results obtained so far to tensor valuations. These
results are very recent (Auneau-Cognacq et al., 2013). We will define so-called integrated
Minkowski tensors for which a genuine rotational Crofton formula holds. As we shall see,
using integrated Minkowski tensors, the two problems of finding (1) rotational averages
of intrinsic volumes and (2) expressing intrinsic volumes as rotational integrals can be
given a common formulation.

For non-negative integers r and s, k = 0, . . . ,d − 1, the Minkowski tensors are

Φk,r,s(K) :=
ωd−k

r!s!ωd−k+s

∫

Rd×Sd−1
xrusΛk(K,d(x,u)) (surface tensor)

Φd,r,0(K) :=
1
r!

∫

K
xr νd(dx) (volume tensor)

Here, xr is the symmetric tensor of rank r determined by x, while xrus is the symmetric
tensor product of xr and us. Furthermore, Λk(K, ·) is the kth support measure or general-
ized curvature measure of K , k = 0, . . . ,d − 1. The support measure Λk is concentrated on
the normal bundle NorK of K which consists of all pairs (x,u) where x ∈ ∂K and u is an
outer unit normal vector of K at x. The rank of Φk,r,s(K) is r + s. If K is smooth such that
there is a unique outer unit normal u(x) for each x ∈ ∂K , then the surface tensors can be
expressed as follows

Φk,r,s(K) =
1

r!s!ωd−k+s

∫

∂K
xru(x)s

∑

|I |=d−1−k

∏

i∈I
κi(x)Hd−1(dx),

k = 0, . . . ,d − 1, r, s non-negative integers.
For r = s = 0, we have Φk,0,0(K) = Vk(K), the kth intrinsic volume, k = 0, . . . ,d. Other-

wise, Φk,r,s(K) carries interesting information about the position, shape and orientation
of K , cf. e.g. Beisbart et al. (2002, 2006); Schröder-Turk et al. (2011a,b). The normal-
ized rank 1 tensor Φd,1,0(K)/νd(K) is equal to the usual centre of gravity of K while
Φd−1,1,0(K)/Vd−1(K) is a boundary centre of gravity. Minkowski tensors of rank two and
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higher provide additional information about the shape and the orientation of K . For
further details, see Jensen and Ziegel (2012) and references therein.

For the development of rotational integral geometry of Minkowski tensors, we will
now introduce the integrated Minkowski tensors. These tensors are weighted integrals of
Minkowski tensors defined on lower-dimensional k-flats.

Definition 1.6. For 0 ≤ j < k < d, t > k − d and non-negative integers r and s, the integrated
Minkowski tensors are

Φk,t
j,r,s(K) :=

∫

Edk
Φ

(E)
j,r,s(K ∩E)d(O,E)t dE,

and
Φk,t
k,r,0(K) :=

∫

Edk
Φ

(E)
k,r,0(K ∩E)d(O,E)t dE,

where the integrands Φ (E)
j,r,s(K ∩E) and Φ

(E)
k,r,0(K ∩E) are calculated relative to E. �

The condition t > k−d ensures that Φk,t
j,r,s(K) is well-defined. The integrated Minkowski

tensors defined in Auneau-Cognacq et al. (2013) are identical to those given in Defini-
tion 1.6, up to multiplication by the constant

cd,k =ωd · · ·ωd−k+1/[ωk · · ·ω1].

There are a number of interesting special cases of integrated Minkowski tensors. Using
Definition 1.6 for r = s = t = 0 we have

Φk,0
j,0,0(K) = ck,d−k+j

j,d Vd−k+j(K), 0 ≤ j ≤ k < d (classical Crofton formula)

More generally, using Hug et al. (2008, Theorem 2.4 and 2.5), we find

Φk,0
j,r,s(K) = cd,k,j,sΦd−k+j,r,s(K), 0 ≤ j < k < d,s = 0,1, (1.13)

Φk,0
k,r,0(K) = Φd,r,0(K), 0 < k < d. (1.14)

Here,

cd,k,j,s = ck,d−k+j
j,d

ωj+2

ωj+s+2

ωd−k+j+s+2

ωd−k+j+2
.

In Hug et al. (2008), it is also shown for arbitrary non-negative integers s that Φk,0
j,r,s is a

linear combination of Minkowski tensors.
The integrated Minkowski tensors obey a genuine rotational Crofton formula.

Proposition 1.7. (Rotational Crofton formula) For 0 ≤ j < k < p ≤ d, t > k − d and non-
negative integers r and s, we have

Φk,t
j,r,s(K) =

ωd−k
ωp−k

∫

Ldp
Φ
k,d−p+t
j,r,s (K ∩L)dL. (1.15)

For j = k, (1.15) holds for s = 0.
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Proof. We use (1.12) with r = k and k = p and find

Φk,t
j,r,s(K) =

∫

Edk
Φ

(E)
j,r,s(K ∩E)d(O,E)t dE

=
ωd−k
ωp−k

∫

Ldp

∫

ELk
Φ

(E)
j,r,s(K ∩E)d(O,E)d−p+t dEdL

=
ωd−k
ωp−k

∫

Ldp
Φ
k,d−p+t
j,r,s (K ∩L)dL.

The second statement is proved in exactly the same manner.

By choosing the parameters in the rotational Crofton formula appropriately, either the
left-hand side or the right-hand side of the formula becomes a classical Minkowski tensor.

Corollary 1.8. (Rotational averages of Minkowski tensors) For s ∈ {0,1} and t = p − d, we
have ∫

Ldp
Φ

(L)
m,r,s(K ∩L)dL = c−1

p,p−q,m−q,s
ωq

ωd−(p−q)
Φ
p−q,p−d
m−q,r,s (K), (1.16)

for 0 < q ≤m < p ≤ d.
If m = p, then s = 0, and we get

∫

Ldp
Φ

(L)
p,r,0(K ∩L)dL =

ωq
ωd−(p−q)

Φ
p−q,p−d
p−q,r,0 (K), (1.17)

for 0 < q < p ≤ d.

Proof. Combining (1.13) and (1.15), we find
∫

Ldp
Φ

(L)
m,r,s(K ∩L)dL = c−1

p,p−q,m−q,s
∫

Ldp
Φ
p−q,0
m−q,r,s(K ∩L)dL

= c−1
p,p−q,m−q,s

ωq
ωd−(p−q)

Φ
p−q,p−d
m−q,r,s (K).

The second statement is proved in exactly the same manner.

Note that for r = s = 0, the left-hand sides of (1.16) and (1.17) are rotational averages of
intrinsic volumes, see Section 1.1 and Auneau-Cognacq et al. (2012); Jensen and Rataj
(2008).

As we shall see, it is more interesting for applications in local stereology to try to
find the functional defined on the subspace Lp whose rotational average equals a given
classical Minkowski tensor. This problem can again be solved for s ∈ {0,1} by combining
the rotational Crofton formula with equations (1.13) and (1.14).

Corollary 1.9. (Minkowski tensors as rotational averages) For s ∈ {0,1} and t = 0, we have

Φd+m−p,r,s(K) = c−1
d,p−q,m−q,s

ωd−(p−q)

ωq

∫

Ldp
Φ
p−q,d−p
m−q,r,s (K ∩L)dL, (1.18)
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for 0 < q ≤m < p ≤ d.

If m = p, then s = 0, and we get

Φd,r,0(K) =
ωd−(p−q)

ωq

∫

Ldp
Φ
p−q,d−p
p−q,r,0 (K ∩L)dL, (1.19)

for 0 < q < p ≤ d.

Proof. Combining (1.13) and (1.15), we find

∫

Ldp
Φ
p−q,d−p
m−q,r,s (K ∩L)dL =

ωq
ωd−(p−q)

Φ
p−q,0
m−q,r,s(K)

=
ωq

ωd−(p−q)
cd,p−q,m−q,sΦd+m−p,r,s(K).

The second statement is proved in exactly the same manner.

For r = s = 0 and q = 1, the result in Corollary 1.9 reduces to the main result in Auneau
and Jensen (2010), see Proposition 1.3.

It is clearly of interest to study what kind of geometric information the integrated
Minkowski tensors carry about the original set K . In the proposition below, we give
such geometric interpretation for Φk,t

k,r,0 and Φd−1,t
d−2,r,0. For a proof, the reader is referred to

Auneau-Cognacq et al. (2013).

Proposition 1.10. For 0 < k < d, t > k − d and a non-negative integer r

Φk,t
k,r,0(K) =

1
r!
Γ ( t+d−k2 )Γ (d2 )

Γ ( t+d2 )Γ (d−k2 )

∫

K
xr |x|t νd(dx). (1.20)

Furthermore, if K is a compact d-dimensional C2 manifold with boundary, then for t > 0 and a
non-negative integer r

Φd−1,t
d−2,r,0(K) =

ωd−1

2r!ωd
B
(
t+1
2 ,

d
2

)
×
∫

∂K
xr |x|tF−1

2 ,−
t
2 ;d−1

2
(sin2β(x))Hd−1(dx). (1.21)

In Section 1.2, we studied the functional αk,j , see Proposition 1.3. Note that this
functional is a special case of an integrated Minkowski tensor since

αk,j(M) =
ωd−k+1

ω1

(
c
k−1,d−k+j
j−1,d

)−1
Φk−1,d−k
j−1,0,0 (M),

M ∈ KLconv, L ∈ Ldk . If we in Proposition 1.10 insert these parameter values, we get the
result in Corollary 1.5.
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1.4 A principal rotational formula

To the best of our knowledge, a principal rotational formula is still not available in the
literature. Focusing on intrinsic volumes, such a formula involves integrals of the form

∫

SOd

Vk(K ∩RM)dR, (1.22)

k = 0, . . . ,d, where SOd is the special orthogonal group in Rd , K and M are convex and
compact subsets of Rd , and dR is the element of the unique rotation invariant probability
measure on SOd . From an applied point of view such a formula is interesting. Here,
K is the unknown spatial structure of interest while M is a known ’sampling window’
constructed by the observer. The aim is to get information about K from observation of
the intersection of K with a randomly rotated version of M. For k = d, (1.22) is equal to

1
ωd

∫ ∞

0
r−(d−1)Hd−1(K ∩ rSd−1)Hd−1(M ∩ rSd−1)dr.

To see this, we use that
∫

SOd

Vd(K ∩RM)dR =
∫

SOd

∫

Rd
1K∩RM(x)νd(dx)dR

=
∫

Rd
1K (x)

[∫

SOd

1RM(x)dR
]
νd(dx).

Since
∫

SOd

1RM(x)dR =
∫

SOd

1M(R−1x)dR

=
∫

SOd

1M(Rx)dR

= Hd−1(M ∩ |x|Sd−1)/Hd−1(|x|Sd−1)

= |x|−(d−1)ω−1
d Hd−1(M ∩ |x|Sd−1),

we obtain
∫

SOd

Vd(K ∩RM)dR =
1
ωd

∫

K
|x|−(d−1)Hd−1(M ∩ |x|Sd−1)νd(dx)

=
1
ωd

∫ ∞

0
r−(d−1)Hd−1(K ∩ rSd−1)Hd−1(M ∩ rSd−1)dr.

A result of a similar form involving two terms can be obtained for k = d − 1. The case of
general k is still open.

2 Local stereology

Local stereology is the branch of stereology, dealing with inference about K ∈Kdconv from
sections K ∩ L, L ∈ Ldk , 0 < k < d. Usually, the set class considered is not restricted to
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compact and convex subsets of Rd , but we will here focus on such sets for the sake of
simplicity of presentation. A model example of application of local stereology is the case
when K is a biological cell, studied via sections of the cell with planes passing through a
reference point, usually taken to be the cell nucleus or a nucleolus. In the following, we
will identify the reference point with the origin O.

The monograph Jensen (1998) is an introduction to local stereology, where the focus
is on Hausdorff measures rather than on intrinsic volumes. In Jensen (1998), the local
stereological procedures are mainly presented from a design-based point of view, where
K is regarded as fixed, while the k-subspace L is isotropic random. See also the recent
publication Jensen and Ziegel (2012) where this point of view is taken in relation to
estimation of Minkowski tensors.

In this chapter, we will take the dual model-based point of view. We let Z be an
isotropic random convex body in Rd and let V̄j(Z) = EVj(Z), j = 0, . . . ,d, denote its mean
intrinsic volumes. One of our aims is to use the rotational integral geometric identities,
developed in the previous section, to derive unbiased local stereological estimators of the
mean intrinsic volumes.

The results in Section 1.1 can be used to relate mean intrinsic volumes V̄j(Z ∩L) on a
k-subspace L to properties of the original random set Z. For this purpose, let

Φ̄d(Z,A) = Eνd(Z ∩A), A ∈ B(Rd),

Λ̄j(Z,A×B) = EΛj(Z,A×B), A ∈ B(Rd),B ∈ B(Sd−1),

j = 0, . . . ,d − 1. Here, Λ̄j(Z, ·) is the mean jth support measure associated with Z. Note
that Φ̄d(Z, ·) has the following simple expression

Φ̄d(Z,A) =
∫

A
pZ(x)νd(dx), A ∈ B(Rd),

where pZ(x) = P(x ∈ Z), x ∈ Rd . Using (1.5), we find for L ∈ Ldk ,

V̄k(Z ∩L) =
∫

Ldk
EVk(Z ∩M)dM

= E
∫

Ldk
Vk(Z ∩M)dM

= E
Γ (d/2)

π(d−k)/2Γ (k/2)

∫

Z
|x|−(d−k)νd(dx)

=
Γ (d/2)

π(d−k)/2Γ (k/2)

∫

Rd
|x|−(d−k) Φ̄d(Z,dx).

At the first equality sign, we have used that Vk and the distribution of Z is invariant under
rotations. Likewise, we find for L ∈ Ldk , using (1.7),

V̄k−1(Z ∩L)

=
Γ (d/2)

π(d−k)/2Γ (k/2)

∫

Rd×Sd−1
|x|−(d−k)F− 1

2 ,
d−k

2 ; d−1
2

(sin2∠(x,u))Λ̄d−1(Z,d(x,u)).
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The result (1.6) can be used to get a general expression for V̄j(Z ∩L), j = 0, . . . , k − 1, as an
integral with respect to Λ̄d−1(Z, ·).
Example 2.1. For d = 3 and k = 2, we get

area(Z ∩L) =
1
2

∫

R3
|x|−1 Φ̄3(Z,dx)

and

length(∂Z ∩L) =
2
π

∫

R3×S2
|x|−1E(|sin∠(x,u)|,π/2)Λ̄2(Z,d(x,u)),

see also Example 1.1 and 1.2. �

In order to derive unbiased local stereological estimators of mean intrinsic volumes
of the original set Z, we need the rotational integral geometric identities derived in
Section 1.2. Using Proposition 1.3, we find for L ∈ Ldk

V̄d−k+j(Z) =
ωd−k+1

ω1

(
c
k−1,d−k+j
j−1,d

)−1
∫

ELk−1

d(O,E)d−kV̄j−1(Z ∩E)dE, (2.1)

k = 1, . . . ,d, j = 1, . . . , k. In the particular case j = k, we get, using Corollary 1.5, the more
explicit expression

V̄d(Z) =
π(d−k)/2Γ (k/2)

Γ (d/2)

∫

L
|x|d−k Φ̄k(Z ∩L,dx). (2.2)

It follows that

m(Z ∩L) =
π(d−k)/2Γ (k/2)

Γ (d/2)

∫

Z∩L
|x|d−k νk(dx) (2.3)

is an unbiased estimator of V̄d(Z).

Example 2.2. (Local estimation of volume in R3) Let d = 3 and k = 1. It follows from (2.3)
that for L1 ∈ L3

1

m(Z ∩L1) = 2π
∫

Z∩L1

|x|2ν1(dx) (2.4)

is an unbiased estimator of the mean volume V̄3(Z) of Z. This estimator is called the
nucleator in the applied literature (Gundersen, 1988) and will here be denoted bymcl1(Z∩
L1) (the index cl1 stands for classical nucleator based on observation along 1 line). If O ∈ Z,
Z ∩L1 = [x−,x+] is a line segment containing the origin and (2.4) reduces to

mcl1(Z ∩L1) =
2π
3

(|x+|3 + |x−|3),

cf. Figure 1.
Note that if Z is a ball centred atO with random radius, thenmcl1(Z∩L1) is identically

equal to the volume of Z. The estimator based on observation along two perpendicular
lines

mcl2(Z ∩L1) = 1
2 [mcl1(Z ∩L1) +mcl1(Z ∩L⊥1 )]
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x-

x+Z∩L
O

L
1

Figure 1: The nucleator estimator requires the measurement of the distance from the origin O to
the boundary points x+ and x−.

is widely used and highly cited in the biosciences.

For d = 3 and k = 2, (2.3) leads to an unbiased estimator of V̄3(Z) based on measure-
ments in a plane L through O. The estimator is called the integrated nucleator, cf. Hansen
et al. (2011b), and takes the following form

mint(Z ∩L) = 2
∫

Z∩L
|x|ν2(dx).

The reason why the estimator is called the integrated nucleator is the following result

mint(Z ∩L) =
∫

LL1
mcl1(Z ∩L1)dL1, (2.5)

that can be shown, using polar decomposition in the plane L. Recently, Luis M. Cruz-
Orive has shown that the integrated nucleator is identical to the so-called wedge estimator,
see Cruz-Orive (2012). A discretized version of mint(Z ∩ L), called the isotropic rotator,
was introduced already in Jensen and Gundersen (1993) together with another local
stereological estimator of volume, the so-called vertical rotator. �

Example 2.3. (Local estimation of surface area in R3) Let d = 3 and consider estimators of
the mean surface area S̄(Z) = 2V̄2(Z). Using (2.1) with d = 3, k = 2 and j = 1, we find that

V̄2(Z) = 2π
∫

EL1
d(O,E)V̄0(Z ∩E)dE.

It follows that

m(Z ∩L) = 4π
∫

EL1
d(O,E)1{Z ∩E , ∅}dE

is an unbiased estimator of S̄(Z).
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Z∩L
θO

h
Z∩L
(θ)

Figure 2: For θ ∈ [0,2π), the value hZ∩L(θ) of the support function is the distance from the origin
O to the touching stipped line.

If O ∈ Z, we can express m(Z ∩L) in a simple way by means of the support function
hZ∩L of Z ∩L. (The definition of the support function is illustrated in Figure 2.) We find

m(Z ∩L) = 4π
∫ π

0

∫ hZ∩L(θ)

−hZ∩L(θ+π)
|r |dr dθ

π

= 4
∫ π

0

[∫ hZ∩L(θ)

0
r dr +

∫ hZ∩L(θ+π)

0
r dr

]
dθ

= 2
∫ 2π

0
hZ∩L(θ)2 dθ.

This representation shows that m(Z ∩L) is equal to four times the area of the flower set
associated with Z ∩L, defined by

F(Z ∩L) := {r(cosθ,sinθ) |0 ≤ r ≤ hZ∩L(θ)}.

This result was first published in Cruz-Orive (2005). The estimator has accordingly been
called the flower estimator. In Cruz-Orive (2008, 2011), a discretization of m(Z ∩L) based
on measurement of the support function in both directions along two perpendicular lines
is further discussed. The resulting discretized estimator is called the pivotal estimator and
is very efficient, see Dvořák and Jensen (2013).

An alternative representation of m(Z ∩L) may be obtained by using the second result
of Corollary 1.5 for d = 3 and k = 2 and the fact that

F− 1
2 ,− 1

2 ; 1
2
(sin2∠(x,u)) = cos∠(x,u) +∠(x,u)sin∠(x,u),

cf. e.g. Jensen (1998, p. 146). Using this, the close relation to another estimator of surface
area, the surfactor (Jensen and Gundersen, 1987), may be seen. For further details, see
Jensen and Ziegel (2012, Section 5.1.4). �

Using the results in Section 1.3, we can derive local stereological estimators of
Minkowski tensors. For simplicity, we will here focus on the case of volume tensors.
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A more comprehensive treatment is given in Jensen and Ziegel (2012). Combining (1.19)
and (1.20), we find for L ∈ Ldk

Φ̄d,r,0(Z) =
π(d−k)/2Γ (k/2)

Γ (d/2)
1
r!

∫

L
xr |x|d−k Φ̄k(Z ∩L,dx). (2.6)

For r = 0, the result reduces to (2.2).
Using (2.6), we can construct local stereological estimators of centres of gravity (r = 1)

and volume tensors of rank two (r = 2) that can be used to obtain information about
orientation and shape of Z. Below, we only consider the case r = 1.

Example 2.4. (Local estimation of centre of gravity in R3) Let d = 3, r = 1 and k = 1. Then,
we find, using (2.6),

Φ̄3,1,0(Z) = 2π
∫

L
x |x|2 Φ̄1(Z ∩L,dx).

It follows that

m(Z ∩L) = 2π
∫

Z∩L
x |x|2ν1(dx)

is an unbiased estimator of Φ̄3,1,0(Z). If O ∈ Z, then Z ∩ L is a line segment [x−,x+],
containing O. If e is a unit vector spanning L and pointing in the same direction as x+,
then

m(Z ∩L) =
π
2

(|x+|4 − |x−|4)e.

Note that if Z is centrally symmetric around O, then m(Z ∩L) =O, always. �

The local stereological estimators can be used to analyze a particle population, using
local sectional data, thereby providing information about the size, position, orientation
and shape of the particles. Let us assume that the particles may be described by a
stationary germ-grain model

∪∞i=1(xi +Zi),

where {xi} is a stationary point process in Rd and {Zi} are i.i.d. nonempty, compact and
convex random subsets of Rd , independent of {xi}. We let Z0 be a random set with the
common distribution of the Zis, denoted by Q. We will assume that Q is invariant under
rotations in Rd .

Our aim is to estimate the distribution of β(Z0) from local sectional data where β may
be an intrinsic volume or, more generally, a Minkowski tensor. Available for observation
is a sample of particles {xi +Zi : xi ∈W } collected in a d-dimensional sampling window W ,
see Figure 3. We will focus on the situation in optical microscopy, where it is possible to
perform measurements on any virtual section Zi ∩L, L ∈ Ldk . If α is a rotation invariant
functional, satisfying ∫

Ldk
α(K ∩L)dL = β(K),
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xi

xi+Zi

W

Figure 3: Sampling of particles with reference point in W . Sampled particles are shown grey.

for any K ∈Kdconv, then

ᾱ(Z0 ∩L) =
∫

Ldk
ᾱ(Z0 ∩M)dM = E

(∫

Ldk
α(Z0 ∩M)dM

)
= E(β(Z0)) = β̄(Z0).

If we let N be the number of sampled particles, then

∑

xi∈W
α(Zi ∩L)/N

is a ratio-unbiased estimator of β̄(Z0). If several sections are used per particle Zi , one
may estimate β(Zi) precisely and use the empirical distribution of {β̂(Zi) |xi ∈W } as an
estimate of the distribution of β(Z0).

Local stereology of spherical particles with non-centrally placed reference point has
recently been studied in Thórisdóttir and Kiderlen (2013).

3 Variance reduction techniques

In the previous section, we have used rotational integral geometric identities to develop
local stereological procedures for estimating quantitative properties of a spatial structure.
The local stereological estimators can be applied without specific shape assumptions but
may have a large variance. In this section, we will discuss procedures for reducing the
variance of the estimators. Some of the procedures require the use of automatic image
analysis. We will focus on the local stereological estimators presented in Examples 2.2
and 2.3 of the previous section.

So, in this section, Z will be an isotropic random convex body in R3. Let us first
consider estimation of the mean volume V̄3(Z) as described in Example 2.2. We let L ∈ L3

2
be a plane through the origin and L1 ∈ LL1 a line in L through the origin. Since mcl1(Z ∩L1)
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and mcl1(Z ∩L⊥1 ) are identically distributed, we have

var(mcl2) = var(1
2 [mcl1(Z ∩L1) +mcl1(Z ∩L⊥1 )])

= 1
2 [var(mcl1) + cov(mcl1(Z ∩L1),mcl1(Z ∩L⊥1 ))]

≤ var(mcl1).

It follows that the variance of the classical nucleator based on observation along two
perpendicular lines is smaller than or equal to the variance obtained when just observing
along one line.

Because of (2.5), the integrated nucleator mint may be regarded as a classical nucleator
based on measurements along an infinite number of lines. As a consequence, the variance
of mint is expected to be smaller than or equal to the variance of mcl1 (and mcl2). A
formal argument for this result goes as follows. The identity (2.5) may be regarded as a
conditional mean value result, viz.

mint = E(mcl1(Z ∩L1) |Z),

where the mean value is conditional on Z and with respect to an isotropic line L1 in the
plane L through O, independent of Z. It follows that

var(mcl1) = var(E(mcl1(Z ∩L1) |Z)) + E(var(mcl1(Z ∩L1) |Z))

= var(mint) + E(var(mcl1(Z ∩L1) |Z))

≥ var(mint).

Similarly, var(mcl2) ≥ var(mint).
Because of these variance relations, it appears as an obvious idea to use mint instead

of mcl1 or mcl2 . In contrast to the two latter estimators that requires a few distance
measurements by an expert, mint needs automatic segmentation of Z ∩ L. Let Z̃2 be an
estimate of the section Z ∩L, obtained by computerized image analysis. The automatic
nucleator is now defined as

maut =mint(Z̃2).

Since the segmentation may not be precise in all cases, an intermediate version may be
preferable. An expert supervises the process. If the segmentation is judged satisfactory,
maut is used, otherwise the expert intervenes and determine mcl2 manually. This estimator
is called the semi-automatic nucleator and is denoted msemi , cf. Hansen et al. (2011b).

The estimators mcl1 , mcl2 and mint are unbiased while maut and msemi may be biased.
In fact, maut may be heavily biased if the segmentation is generally unsatisfactory while
the bias of msemi is expected to be small because the segmented section Z̃2 is only used
when the segmentation is judged satisfactory by an expert. Also, msemi is expected to be
more precise (for instance, in terms of mean square error) than the best manual estimator
mcl2 , because msemi only differs from mcl2 when the segmentation is satisfactory and in
these cases, the more precise estimator mint is used.

In a concrete study of somastatin positive inhibitory interneurons from transgenic
GFP-GAD mice hippocampi, cf. Hansen et al. (2011b), it was found that maut had a bias
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of 32 % while msemi only 0.4 %. The relative error (
√

MSE / mean) was 0.58, 0.61 and 0.69
for mint, msemi and mcl2 , respectively.

A similar comparative investigation has been performed in Dvořák and Jensen (2013)
for the local stereological estimators of mean surface area presented in Example 2.3. The
estimator that requires automatic segmentation of the planar section Z ∩ L is here the
flower estimator. Semi-automatic estimation based on two types of discretizations of the
flower estimator, namely the pivotal estimator and the surfactor, has been investigated in
Dvořák and Jensen (2013). For ellipsoidal particles, it is shown that the flower estimator
is equal to the pivotal estimator based on support function measurements along four
perpendicular rays. This makes the pivotal estimator a powerful approximation to the
flower estimator. An important decrease in workload may be obtained by using the
semi-automatic approach.

4 Computational stereology

Stereology provides information about quantitative properties of spatial structures from
observations in lower-dimensional sections of the spatial structure under study. A stere-
ological procedure typically involves the following steps: (1) sampling of blocks to be
analyzed, (2) generation of sections through the blocks and (3) analysis of the sampled
sections (Baddeley and Jensen, 2005, Chapter 12).

Until recently, stereology has mainly been a ’manual’ discipline. Each of the three
steps mentioned above has been performed manually by experts and technicians. How-
ever, during the last decades, computers have become an increasingly important tool
in the stereological analysis of spatial structures, and a new sub-discipline of stereol-
ogy, computational stereology, is emerging. Computational stereology may be defined
as the sub-discipline of stereology that deals with the design of computational proce-
dures that can substitute manual procedures in one of the three steps mentioned above
(Rasmusson, 2012).

It is expected that computational stereology will influence the practice in the labora-
tory. For instance, computational stereology may imply faster execution times compared
to existing manual procedures or more efficient probes that require reliable automatic
segmentation. Eventually, computational stereology may also affect the advance of theo-
retical stereology. Computational procedures thus open up the possibility for developing
new stereological methods for estimating more complicated quantities than scalar quan-
tities such as volume, surface area, length and number. One obvious example is the
Minkowski tensors. On the other hand, a clear definition of computational stereology
may make developers of computational image analysis tools realize the importance of 3D
interpretations of 2D sections.

Before, images were typically recorded by systematically moving the microscope stage
and taking photographs (micrographs) of the generated fields of view in the microscope.
Subsequently, the analysis was performed manually on the generated micrographs. Nowa-
days, computers are used in the acquisition of the images to be analyzed by stereological
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methods. Such digital images are a prerequisite for any procedure in computational
stereology.

The appearance of whole slide scanners has been a major advance for computational
stereology. Here, the operator delineates the region of interest (ROI) of the sampled
section and the whole slide scanner then generates a digital representation of the ROI. It
is important that the scanning and storage of the digital images of the sampled sections
can be performed without interference by the operator. As a consequence, the operator
has the freedom to choose an appropriate time for analysis of the digital images, using
developed software.

With digital representations of the sampled sections, it is possible to (1) extend
the class of stereological estimators that can be implemented and (2) develop efficient
subsampling of the sections under study.

An example of issue 1 relates to the disector that is used for estimating particle number
(Kiderlen, 2012, p. 41–42). It is here needed to identify particles in pairs of sections. The
manual alignment of the pair of sections may be very time consuming. It is therefore an
important advance that this alignment can be performed automatically on the basis of a
digital representation of the two sections.

With a digital representation of the sampled sections, it is also possible to implement
intelligent non-uniform sampling of fields of view within the section that may result in
an important reduction in the variance of stereological estimators (issue 2). The standard
procedure has until recently been to use systematic uniform random sampling of fields of
view. If the particles (cells) of interest are distributed in an inhomogeneous pattern in the
sampled section, this approach may, however, be rather inefficient. In such cases, many
fields of view will contain no or very few cells, if systematic uniform random sampling is
used. The idea is to use instead non-uniform sampling of fields of view with a probability
of selecting a particular field of view that is roughly proportional to the number of cells
seen in the field of view. Let the ith field of view contains yi cells, i = 1, . . . ,N , where N
is the total number of fields of view. Let S ⊂ {1, . . . ,N } be the random sample of fields of
view and pi the probability that the ith field of view is included in the sample. Provided
that pi > 0 whenever yi > 0, ∑

i∈S
yi/pi

is an unbiased estimator of the total number of the cells in the section. Typically, the
sampling probability pi is determined automatically from a scan of the section at low
magnification, using a colour proportion that is roughly proportional to yi while the actual
counts in the sampled fields of view are determined by an operator at high magnification.
If pi is exactly proportional to yi , this estimator always gives the right answer. In empirical
studies, increase in efficiencies of a factor of 10 compared to ordinary systematic uniform
random sampling has been found, see Hansen et al. (2011a) and references therein. In the
applied stereological literature, the estimator is called the proportionator.

Until recently, there have only been limited interactions between researchers in stere-
ology and image analysis. This situation is very unfortunate, at least for the stereologists,
because image analysis may actually be required for implementation of advanced stere-
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ological procedures. One example is the semi-automatic procedures described in the
previous section of this chapter.
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