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These lecture notes contain an introduction to rotational integral geometry. A
short presentation of recent results for rotational integral geometry of tensor
valuations is also given and open problems in rotational integral geometry are
discussed.

The motivation for developing rotational integral geometry comes from local
stereology ([10]) where the aim is to estimate quantitative properties of a spatial
structure from random sections passing through reference points. A model
example is the case where the structure is a biological cell and the reference point
is the cell nucleus or some identifiable part of the nucleus such as a nucleolus.
In this example, the cell is regarded as a neighbourhood of its nucleus. Some of
the methods to be described in these lecture notes are widely used and in fact
highly cited in the biomedical literature, see e.g. [7, 11, 20].

I also want to use the opportunity to sincerely thank Professor Andreas
Bernig for giving me the opportunity to give these Erasmus lectures about
rotational integral geometry at Goethe University, Frankfurt.
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Overview of lectures

Lecture 1: Rotational integrals of intrinsic volumes
We will study rotational integrals of sectional volume, sectional surface area and,
more generally, intrinsic volumes. Rotational integrals of sectional volume are
easily treated, using the Blaschke-Petkantschin formula. The case of sectional
surface area and the remaining intrinsic volumes is more involved.

Lecture 2: Intrinsic volumes as rotational integrals
In this lecture, we study the ’opposite/inverse’ problem of determining the mea-
surement in the section with rotational integral equal to a given intrinsic volume.
We derive a functional, defined on the section, with this property and study its
geometric properties.

Lecture 3: Rotational integral geometry of tensors
We will extend the results of the previous lectures to Minkowski tensors.

Lecture 4: Future topics in rotational integral geometry
We will discuss a number of important open problems in rotational integral
geometry, including uniqueness of the functional defined in Lecture 2, estimation
of tensors in particle populations and a principal rotational formula.

Literature:
As background material, we recommend the book [10] on local stereology. Most
of the material presented in this lecture series is also described in the papers
[1, 2, 3, 12].
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Lecture 1:
Rotational integrals of intrinsic volumes

We let K(Rd) denote the set of convex bodies (compact and convex sets) in
Rd. The geometric identities considered throughout these lecture notes have
the following general form

∫
α(X ∩ L)dL = β(X), (1)

where α, β are geometrical quantities to be defined more precisely below, X ∈
K(Rd) is the spatial object of interest, L is the probe (line, plane, grid of parallel
lines, ...) and dL is ‘uniform integration’ over positions of L. In rotational
integral geometry, we focus on geometric identities for j-dimensional planes Lj
in Rd passing through the origin O (Lj is a j-dimensional linear subspace in
Rd, called a j-subspace in the following). The choice of origin is an important
question in applications; in biomedicine, X is typically a cell and O is the nucleus
or a nucleolus of the cell.

In this lecture, rotational integrals of intrinsic volumes will be studied. So
α is an intrinsic volume, determined on the section, and the aim is to find
the corresponding β. As we shall see, β involves weighted curvature measures.
Intrinsic volumes are special cases of the Minkowski tensors to be considered in
Lecture 3.

Recal that for X ∈ K(Rd), we can define d + 1 intrinsic volumes Vk(X),
k = 0, . . . , d. We have

• Vd(X) = volume (Lebesgue measure) of X

• Vd−1(X) = 2−1× surface area of X

• V0(X) = the Euler-Poincaré characteristic of X

For non-empty X ∈ K(Rd), V0 is thus identically equal to 1. The intrinsic
volumes can be extended to larger set classes for which V0 contains interesting
topological information.

The intrinsic volumes are examples of real-valued valuations on Rd. They are
motion invariant and continuous with respect to the Hausdorff metric. Recall
that a real-valued valuation on Rd is a mapping µ : K(Rd)→ R satisfying

µ(K ∪ L) + µ(K ∩ L) = µ(K) + µ(L),

whenever K,L,K ∪ L ∈ K(Rd). Hadwiger’s famous characterization theorem
states that any motion invariant, continuous valuation is a linear combination
of intrinsic volumes.

The classical Crofton formula relates intrinsic volumes defined on j-dimensional
affine subspaces to intrinsic volumes of the original set

∫

Fd
j

Vk(X ∩ Fj)dF dj = cd,j,kVd−j+k(X), (2)

j = 0, 1, . . . , d, k = 0, 1, . . . , j.

Here, Fdj is the set of j-dimensional affine subspaces in Rd. Any Fj ∈ Fdj is

of the form Fj = x + Lj , where Lj is a j-subspace and x ∈ L⊥j . Furthermore,
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dF dj = λd−j(dx) dLdj , where dLdj is the element of the rotation invariant measure

on the set Ldj of j−subspaces in Rd and λd−j is the Lebesgue measure on L⊥j .
In these notes, the rotation invariant measure is normalized such that

∫
dLdj = cd,j = ωd · · ·ωd−j+1/ωj · · ·ω1. (3)

Here, ωd = 2πd/2/Γ(d/2) is the surface area of unit ball in Rd. In (2), cd,j,k is
a known constant

cd,j,k = cd,j ·
Γ( j+1

2 )Γ(d+k−j+1
2 )

Γ(k+1
2 )Γ(d+1

2 )
. (4)

Note that for k = j, the Crofton formula relates Lebesgue measure on sections
X ∩ Fj to Lebesgue measure of the original set X. Likewise, for k = j − 1,
sectional surface area is related to the surface area of X.

In rotational integral geometry, the interest is instead in rotational averages
of intrinsic volumes

∫

Ld
j

Vk(X ∩ Lj)dLdj =?

j = 1, . . . , d, k = 0, . . . , j.

These integrals are valuations on Rd. They are rotation invariant, but typically
not translation invariant.

Let us first consider the case k = j. This is the simplest case where Lebesgue
measure is measured on the section. For j = 1, . . . , d, we have

∫

Ld
j

Vj(X ∩ Lj)dLdj = cd−1,j−1

∫

X

|x|−(d−j)λd(dx). (5)

The proof of this result is based on the Blaschke-Petkantschin formula. This
formula exists in many versions. Generally, the Blaschke-Petkantschin formula
concerns a decomposition of a product of Hausdorff measures, see [10, Theorem
5.6]. Here, we only need the decomposition of a single copy of Lebesgue measure.
In this case, the Blaschke-Petkantschin formula takes the following form

cd−1,j−1λd(dx) = |x|d−jλj(dx)dLdj ,

see [10, Proposition 4.5]. For j = 1 (line sections), the Blaschke-Petkantschin
formula is simply polar decomposition in Rd.

Example 1.1. For d = 3 and j = 2, we get, cf. (5),

∫

L3
2

area(X ∩ L2) dL3
2 = β(X),

where

β(X) = π

∫

X

|x|−1λ3(dx). �

The situation is much more complicated, when k < j. Assume for simplic-
ity of the presentation that X is a compact d−dimensional C2 manifold with
boundary. Then, under mild regularity conditions,
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∫

Ld
j

Vk(X ∩ Lj) dLdj

=

∫

∂X

|x|−(d−j)
∑

|I|=j−1−k
wI,j,k(x)

∏

i∈I
κi(x)Hd−1(dx), (6)

where ∂X is the boundary of X, the sum runs over all subsets of {1, . . . , d− 1}
with j−1−k elements, the wI,j,ks are weight functions involving hypergeometric
functions, κi(x), i = 1, . . . , d − 1, are the principal curvatures at x ∈ ∂X and
Hd−1 is Hausdorff measure. In 2008, this result was published in Adv. Appl.
Math. by Jensen and Rataj ([12]). Here, the result was established for the
more general set class consisting of sets with positive reach. The proof involves
extensive geometric measure theory.

Very recently, the explicit form of the weight functions wI,j,k has been pub-
lished ([2]). Note that if X is a ball centred at the origin O, then the wI,j,ks
are constant and |x| is also constant when x ∈ ∂X. We are back to the classical
Crofton formula. Generally, the wI,j,ks depend on the angle between x and the
outer unit normal u(x) at x ∈ ∂X, and the angle between x and the subspace
spanned by the principal directions with indices outside I. In [2], it is shown
for k < j that

∫
Ld

j
Vk(X ∩ Lj)dLdj can be expressed as an integral with respect

to flag measures.
The special case k = j − 1 gives rise to some simplifications of (6). When

k = j−1, I = ∅, the sum on the right-hand side of (6) has only one element and
the curvature product disappears. The following result holds for the rotational
average of the sectional surface area

∫

Ld
j

Vj−1(X ∩ Lj) dLdj

=
cd−1,j−1

2

∫

∂X

|x|−(d−j)F− 1
2 ,

d−j
2 ; d−1

2
(sin2 β(x))Hd−1(dx),

where F is a hypergeometric function and β(x) is the angle between x ∈ ∂X
and the unique outer unit normal u(x) to the boundary at x ∈ ∂X (unique
because of the smoothness condition).

The class of hypergeometric functions is parametrized by three parameters
and has well-known series expansions as well as integral representations. In
particular, we have for 0 < β < γ the following integral representation

Fα,β;γ(z) =
1

B(β, γ − β)

∫ 1

0

(1− zy)−αyβ−1(1− y)γ−β−1dy. (7)

Example 1.2. For d = 3 and j = 2, we find, using (7),

F− 1
2 ,

d−j
2 ; d−1

2
(sin2 β(x)) =

2

π

∫ π/2

0

(1− sin2 β(x) sin2 φ)1/2dφ

=
2

π
E(| sinβ(X)|, π/2),

where E is the elliptic integral of the second kind. We find
∫

L3
2

length(∂X ∩ L2) dL3
2 = β(X),
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where

β(X) = 2

∫

∂X

|x|−1E(| sinβ(X)|, π/2)H2(dx). �

Lecture 2:
Intrinsic volumes as rotational integrals

In this lecture, we want to study the ’opposite/inverse’ problem of determining
the measurement in the section with rotational integral equal to a given intrinsic
volume. So now β is an intrinsic volume and the aim is to find α such that (1)
is satisfied. This problem has been studied in detail in [1, 6].

More specifically, we want to find a functional αj,k, satisfying the following
rotational integral equation

∫

Ld
j

αj,k(X ∩ Lj)dLdj = Vd−j+k(X), (8)

j = 1, . . . , d, k = 1, . . . , j. From an applied point of view, this question is more
interesting than the one studied in the previous lecture, because αj,k is then
the measurement you need to perform in the section. This measurement has a
rotational average equal to the intrinsic volume considered and can be used to
estimate the intrinsic volume.

Let us first consider a simple example in R2 with d = 2 and j = k = 1. The
aim is then to find a functional α1,1 such that

∫

L2
1

α1,1(X ∩ L1)dL2
1 = area (X). (9)

It is fairly easy to find a solution to this problem. Consider an infinitesimal
neighbourhood of x ∈ X of area λ2(dx). Transforming to polar coordinates in
R2, x = (r cos θ, r sin θ), gives us the following decomposition of area measure
in the plane

λ2(dx) = |r|drdθ, (10)

r ∈ R, θ ∈ [0, π). Identifying θ with the line L1 passing through the origin,
having an angle θ with a fixed axis, we have dL2

1 = dθ, and (10) can equivalently
be expressed as

λ2(dx) = d(x,O)λ1(dx)dL2
1,

where λ1 is Lebesgue measure on L1 and d(·, ·) is the notation used for Euclidean
distance. It follows that

α1,1(X ∩ L1) =

∫

X∩L1

d(x,O)λ1(dx)

is a solution to (9).
A solution to the general problem of finding a functional αj,k satisfying (8)

can be derived by combining the classical Crofton formula with a geometric
measure decomposition of the motion invariant measure of r-dimensional affine
subspace in Rd, see [19, p. 285],

dF dr = d(Fr, O)d−r−1dF r+1
r dLdr+1, (11)
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r = 0, . . . , d− 1. The solution is given in the proposition below. We will gener-
alize this result to Minkowski tensors in Lecture 3.

Proposition 2.1 (Auneau and Jensen, 2010 [1]; Gual-Arnau and Cruz-Orive,
2010 [6]). Let Y be a compact and convex subset of Rj. For j = 1, . . . , d,
k = 1, . . . , j, the functional

αj,k(Y ) =
1

cd,j−1,k−1

∫

Fj
j−1

d(O,Fj−1)d−jVk−1(Y ∩ Fj−1)dF jj−1

is a solution to (8).

Proof. Using the measure decompostion (11), we find

∫

Ld
j

αj,k(X ∩ Lj)dLdj

=
1

cd,j−1,k−1

∫

Ld
j

∫

Fj
j−1

d(O,Fj−1)d−jVk−1(X ∩ Lj ∩ Fj−1)dF jj−1dLdj

=
1

cd,j−1,k−1

∫

Ld
j

∫

Fj
j−1

d(O,Fj−1)d−(j−1)−1Vk−1(X ∩ Fj−1)dF jj−1dLdj

=
1

cd,j−1,k−1

∫

Fd
j−1

Vk−1(X ∩ Fj−1)dF dj−1

= Vd−j+k(X).

At the last equality sign, we have used the Crofton formula (2). �
Example 2.2. For d = 3 and j = k = 2, we get

∫

L3
2

α2,2(X ∩ L2)dL3
2 = λ3(X),

where

α2,2(X ∩ L2) =
1

c3,1,1

∫

F2
1

d(O,F1) length(X ∩ F1)dF 2
1 .

Furthermore, for d = 3, j = 2 and k = 1, we get

∫

L3
2

α2,1(X ∩ L2)dL3
2 =

1

2
surface area(X),

where

α2,1(X ∩ L2) =
1

c3,1,0

∫

F2
1

d(O,F1) 1{X ∩ F1 6= ∅}dF 2
1 .

�
It was shown in [1] that for k = j and k = j − 1 the functional αj,k can be

considerably simplified and given in more explicit form. The result is presented
in the corollary below.

Corollary 2.3. Let the situation be as in Proposition 2.1. Then,

αj,j(Y ) =
1

cd−1,j−1

∫

Y

|z|d−jλj(dz)
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and

2cd−1,j−1 αj,j−1(Y ) =

∫

∂Y

|z|d−jF− 1
2 ,−

d−j
2 ; j−1

2
(sin2(β(z)))Hj−1(dz),

where β(z) is the angle between z ∈ ∂Y and the unique outer unit normal u(z)
to the boundary of Y at z ∈ ∂Y .

Proof. Using that Fj−1 = Lj−1 + x, where x ∈ L⊥j−1, we find

αj,j(Y ) =
1

cd,j−1,j−1

∫

Fj
j−1

d(O,Fj−1)d−jVj−1(Y ∩ Fj−1)dF jj−1

=
1

cd,j−1,j−1

∫

Lj
j−1

∫

L⊥j−1

|x|d−jVj−1(Y ∩ (Lj−1 + x))λ1(dx)dLjj−1

=
1

cd,j−1,j−1

∫

Lj
j−1

∫

L⊥j−1

∫

Y ∩(Lj−1+x)

|x|d−jλj−1(dy)λ1(dx)dLjj−1

=
1

cd,j−1,j−1

∫

Lj
j−1

∫

Y

|p(z|L⊥j−1)|d−jλj(dz)dLjj−1

=
1

cd,j−1,j−1

∫

Y

|z|d−j
(∫

Lj
j−1

|p(z|L⊥j−1)|d−j
|z|d−j dLjj−1

)
λj(dz)

=
1

cd,j−1,j−1

∫

Y

|z|d−j
(

cj,j−1
B( 1

2 ,
j−1
2 )

∫ 1

0

y
d−j−1

2 (1− y)
j−3
2 dy

)
λj(dz).

At the last equality sign, we have used [10, Proposition 3.9]. The result con-
cerning αj,j now follows immediately, using (3) and (4).

The result concerning αj,j−1 is more difficult to show. The details can be
found in [1]. Let us here just give a proof sketch. In [1], it is shown that

cd,j−1,j−2αj,j−1(Y ) =
1

2

∫

∂Y

∫

Lj
j−1

|p(u(z)|Lj−1)| |p(z|L⊥j−1)|d−jdLjj−1Hj−1(dz).

The result now follows if we use the following result proved in [1]. For x and y
unit vectors in Lj and non-negative integers n,m, we have

∫

Lj
j−1

|p(x|Lj−1)|m |p(y|L⊥j−1)|ndLjj−1

=
ωj−1

2
B(

n+ 1

2
,
m+ j − 1

2
)F−m

2 ,−n
2 ; j−1

2
(sin2∠(x, y)).

�
In this lecture we have found a functional αj,k satisfying the rotational in-

tegral equation (8). A natural question to ask is whether αj,k is unique. If a
solution is seeked among rotation invariant functionals only, this is indeed the
case for j = k = 1, cf. [13]. It is an open question whether uniqueness holds for
general j and k.
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Lecture 3:
Rotational integral geometry of tensors

In this lecture, we will extend the results of the previous two lectures to tensor
valuations. These results are very recent ([3]). We will define so-called inte-
grated Minkowski tensors for which a genuine rotational Crofton formula holds.
As we shall see, using integrated Minkowski tensors, the two problems of finding
(1) rotational averages of intrinsic volumes and (2) expressing intrinsic volumes
as rotational integrals can be given a common formulation.

For non-negative integers r and s, k = 0, . . . , d − 1, the Minkowski tensors
are

Φk,r,s(X) :=
ωd−k

r! s!ωd−k+s

∫

Rd×Sd−1

xrusΛk(X,d(x, u)) (surface tensor)

Φd,r,0(X) :=
1

r!

∫

X

xrλd(dx) (volume tensor)

Here, xr is the symmetric tensor of rank r determined by x, while xrus is
the symmetric tensor product of xr and us. Furthermore, Λk(X, ·) is the kth
support measure or generalized curvature measure of X, k = 0, . . . , d− 1. The
support measure Λk is concentrated on the normal bundle NorX of X which
consists of all pairs (x, u) where x ∈ ∂X and u is an outer normal vector of X
at x. For r = s = 0, we have Φk,0,0 = Vk, the kth intrinsic volume, k = 0, . . . , d.

For the development of rotational integral geometry of Minkowski tensors, we
will now introduce the integrated Minkowski tensors. These tensors are weighted
integrals of Minkowski tensors defined on j-dimensional affine subspaces.

Definition 3.1. For 0 ≤ k < j < d, t > j − d and non-negative integers r and
s, the integrated Minkowski tensors are

Φj,tk,r,s(X) :=

∫

Fd
j

Φ
(Fj)
k,r,s(X ∩ Fj)d(Fj , O)tdF dj ,

and

Φj,tj,r,0(X) :=

∫

Fd
j

Φ
(Fj)
j,r,0(X ∩ Fj)d(Fj , O)tdF dj ,

where the integrands Φ
(Fj)
k,r,s(X ∩Fj) and Φ

(Fj)
j,r,0(X ∩Fj) are calculated relative to

Fj. The condition t > j − d ensures that Φj,tk,r,s(X) is well-defined.

There are a number of interesting special cases of integrated Minkowski ten-
sors. Using Definition 3.1 for j = d and t = 0 gives Φd,0k,r,s = Φk,r,s. Furthermore,

Φj,0k,0,0 ∝ Vd+k−j , 0 ≤ k ≤ j < d (classical Crofton formula)

More generally, using [9, Theorem 2.4 and 2.5], we find

Φj,0k,r,s ∝ Φd+k−j,r,s, 0 ≤ k < j < d, s = 0, 1, (12)

Φj,0j,r,0 ∝ Φd,r,0, 0 < j < d, (13)

where ∝ in (12) and (13) means that the two functionals are identical up to a
known constant. In [9], it is also shown for arbitrary non-negative integers s
that Φj,0k,r,s is a linear combination of Minkowski tensors.
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The integrated Minkowski tensors obey a genuine rotational Crofton formula.

Proposition 3.2. For 0 ≤ k < j < p ≤ d, t > j − d and non-negative integers
r and s, we have

Φj,tk,r,s(X) =
1

cd−j−1,p−j−1

∫

Ld
p

Φj,d−p+tk,r,s (X ∩ Lp)dLdp. (14)

For j = k, (14) holds for s = 0.

Proof. We use the following decomposition

dF dj =
d(Fj , O)d−p

cd−j−1,p−j−1
dF pj dLdp,

0 < j < p ≤ d, see [19, p. 285]. We find

Φj,tk,r,s(X)

=

∫

Fd
j

Φ
(Fj)
k,r,s(X ∩ Fj)d(Fj , O)tdF dj

=
1

cd−j−1,p−j−1

∫

Ld
p

∫

Fp
j

Φ
(Fj)
k,r,s(X ∩ Fj)d(Fj , O)d−p+tdF pj dLdp

=
1

cd−j−1,p−j−1

∫

Ld
p

Φj,d−p+tk,r,s (X ∩ Lp)dLdp.

The second statement is proved in exactly the same manner. �
By choosing the parameters in the rotational Crofton formula appropriately,

either the left-hand side or the right-hand side of the formula becomes a classical
Minkowski tensor.

Corollary 3.3 (rotational averages of Minkowski tensors). For s ∈ {0, 1} and
t = p− d, the result in Proposition 3.2 reduces to

∫

Ld
p

Φ(Lp)
m,r,s(X ∩ Lp) dLdp ∝ Φp−q,p−dm−q,r,s (X), (15)

for 0 < q ≤ m < p ≤ d.

If m = p, then s = 0, and we get

∫

Ld
p

Φ
(Lp)
p,r,0(X ∩ Lp) dLdp ∝ Φp−q,p−dp−q,r,0 (X), (16)

for 0 < q < p ≤ d.

Proof. Combining Proposition 3.2 with equation (12), we find

∫

Ld
p

Φ(Lp)
m,r,s(X ∩ Lp) dLdp ∝

∫

Ld
p

Φp−q,0m−q,r,s(X ∩ Lp) dLdp

∝ Φp−q,p−dm−q,r,s (X).

The second statement is proved in exactly the same manner. �
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Note that for r = s = 0, the left-handsides of (15) and (16) take the form of a
rotational average of an intrinsic volume, see Lecture 1 and [2, 12].

From an applied point of view, it is in fact more interesting to try to find the
functional defined on the subspace Lp whose rotational average equals a given
classical Minkowski tensor. This problem can again be solved for s ∈ {0, 1} by
combining Proposition 3.2 with equations (12) and (13).

Corollary 3.4 (Minkowski tensors as rotational averages). For s ∈ {0, 1} and
t = 0, the result in Proposition 3.2 reduces to

Φd+m−p,r,s(X) ∝
∫

Ld
p

Φp−q,d−pm−q,r,s (X ∩ Lp)dLdp, (17)

for 0 < q ≤ m < p ≤ d.

If m = p, then s = 0, and we get

Φd,r,0(X) ∝
∫

Ld
p

Φp−q,d−pp−q,r,0 (X ∩ Lp)dLdp, (18)

for 0 < q < p ≤ d.

Proof. Combining Proposition 3.2 with equation (12), we find
∫

Ld
p

Φp−q,d−pm−q,r,s (X ∩ Lp)dLdp ∝ Φp−q,0m−q,r,s(X)

∝ Φd+m−p,r,s(X).

The second statement is proved in exactly the same manner. �
For r = s = 0 and q = 1, the result in Corollary 3.4 reduces to the main result
in [1].

It is clearly of interest to study what kind of geometric information the
integrated Minkowski tensors carry about the original set X. In the proposition
below, we give such geometric interpretation for Φj,tj,r,0 and Φd−1,td−2,r,0. For a proof,
the reader is referred to [3].

Proposition 3.5. For 0 < j < d, t > j − d and a non-negative integer r

Φj,tj,r,0(X) =
cd,j
r!

Γ( t+d−j2 )Γ(d2 )

Γ( t+d2 )Γ(d−j2 )

∫

X

xr|x|tλd(dx).

Furthermore, if X is a compact d-dimensional C2 manifold with boundary, then
for t > 0 and a non-negative integer r

Φd−1,td−2,r,0(X) =
ωd−1
4r!

B
(
t+1
2 , d2

)

×
∫

∂X

xr|x|tF− 1
2 ,−

t
2 ;
d−1
2

(sin2 β(x))Hd−1(dx).

In Lecture 2, we studied the functional αj,k, see Proposition 2.1. Note
that this functional is a special case of an integrated Minkowski tensor since
αj,k ∝ Φj−1,d−jk−1,0,0 . Note also that, in Proposition 2.1, αj,k is expressed as a

functional defined on sets in Rj . If we in Proposition 3.5 insert these parameter
values, we get the result in Corollary 2.3.

11



Lecture 4:
Future topics in rotational integral geometry

The geometric identities we have considered in the previous lectures are all of
the form ∫

Ld
p

α(X ∩ Lp)dLdp = β(X), (19)

where either α or β is an intrinsic volume or, more generally, a Minkowski
tensor. In this lecture, we will discuss a number of topics for future research in
rotational integral geometry, including uniqueness of α functionals, estimation
of tensors in particle populations and a principal rotational formula.

Uniqueness

In Lecture 2, we have found a functional αp,k, satisfying

∫

Ld
p

αp,k(X ∩ Lp)dLdp = Vd−p+k(X), X ∈ K(Rd), (20)

p = 1, . . . , d, k = 1, . . . , p. The functional αp,k is rotation invariant.
A natural question to ask is whether αp,k is unique in the class of rotation

invariant functionals, satisfying (20). The functional αp,k is defined on the set

Sp = {X ∩ Lp : X ∈ K(Rd), Lp ∈ Ldp}

In the following, we will restrict attention to convex bodies containing the origin,
i.e. O ∈ X.

In the case p = k = 1, αp,k reduces to

α1,1(X ∩ L1) =
1

cd,0,0

∫

F1
0

d(O,F0)d−1V0(X ∩ L1 ∩ F0)dF 1
0

=

∫

X∩L1

d(O, x)d−1λ1(dx).

Note that since X is convex and O ∈ X, X∩L1 is of the form [r(−u), Ru] where
r,R ≥ 0 and u ∈ Sd−1 is chosen such that L1 = span{u}. In [13], it is shown
that α1,1 is indeed the unique rotation invariant functional on S1, satisfying

∫

Ld
1

α(X ∩ L1)dLd1 = Vd(X).

The situation for general p and k is still open. Very recently, some progress
has been made in [13] for functionals of a particular form.

Stereology of tensors

The new geometric identities for Minkowski tensors can be used to estimate the
distribution of a Minkowski tensor in a particle population from sectional data,
thereby providing information about the orientation and shape of the particles.
Let us assume that the particles are a realization of a marked point process

12



Ψ = {[xi; Ξi]} where the xis are the points in Rd and the marks Ξi are convex
and compact subsets of Rd. The ith particle of the process is represented by
Xi = xi + Ξi. If the particle process is stationary, it can be shown for any
non-negative measurable function h that

E
∑

i

h(xi,Ξi) = λ

∫

Rd

∫

Kd

h(x,K)Pm(dK)λd(dx),

where λ is the particle intensity and Pm is a probability distribution on K(Rd),
called the particle distribution. We let Ξ0 be a random convex and compact
subset of Rd with distribution Pm.

Our aim is to estimate the distribution of β(Ξ0) from sectional data where
β is a Minkowski tensor. Available for observation is a sample of particles
{xi + Ξi : xi ∈ W} collected in a sampling window. It is possible to perform
measurements on any virtual section Ξi ∩Lp. If Lp is an isotropic section, then

E(α(Ξi ∩ Lp)|Ξi) =

∫

Lp

α(Ξi ∩ Lp)
dLdp
cd,p

=
1

cd,p
β(Ξi).

The distribution of β(Ξ0) can now be estimated by the empirical distribution

of {β̂(Ξi) : xi ∈W}, where

β̂(Ξi) = cd,p

N∑

j=1

α(Ξi ∩ Lp,j)/N

and Lp,j , j = 1, . . . , N , are replicated virtual isotropic sections. It still remains
to study the statistical properties of the tensor estimators.

A principal rotational formula

To the best of our knowledge, a principal rotational formula is still not available
in the literature. Focusing on intrinsic volumes, such a formula involves integrals
of the form ∫

SOd

Vk(X ∩ ρY )ν(dρ), (21)

k = 0, . . . , d, where SOd is the special orthogonal group in Rd, X and Y are con-
vex and compact subsets of Rd, and ν is the unique rotation invariant probability
measure on SOd. From an applied point of view such a formula is interesting.
Here, X is the unknown spatial structure of interest while Y is a known ’test
set’ constructed by the observer. The aim is to get information about X from
observation of the intersection of X with a randomly rotated version of Y . For
k = d, (21) is equal to

1

ωd

∫ ∞

0

r−(d−1)Hd−1(X ∩ rSd−1)Hd−1(Y ∩ rSd−1) dr.

To see this, we use that
∫

SOd

Vd(X ∩ ρY )ν(dρ) =

∫

SOd

∫

Rd

1{x ∈ X ∩ ρY }λd(dx)ν(dρ)

=

∫

Rd

1{x ∈ X}
[∫

SOd

1{x ∈ ρY }ν(dρ)

]
λd(dx).

13



Since
∫

SOd

1{x ∈ ρY }ν(dρ) =

∫

SOd

1{ρ−1x ∈ Y }ν(dρ)

=

∫

SOd

1{ρx ∈ Y }ν(dρ)

= Hd−1(Y ∩ |x|Sd−1)/Hd−1(|x|Sd−1)

= |x|−(d−1)ω−1d Hd−1(Y ∩ |x|Sd−1),

we obtain
∫

SOd

Vd(X ∩ ρY )ν(dρ)

=
1

ωd

∫

X

|x|−(d−1)Hd−1(Y ∩ |x|Sd−1)λd(dx)

=
1

ωd

∫ ∞

0

r−(d−1)Hd−1(X ∩ rSd−1)Hd−1(Y ∩ rSd−1) dr.

A result of a similar form involving two terms can be obtained for k = d − 1.
The case of general k is still open.
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