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Part Il

1. Computation of the flower area and the wedge volume for an interior
pivotal point.

— The pivotal section is convex with smooth boundary of known parametric
coordinates.

— The pivotal section is a convex polygon.

2. Uniqueness properties of the invariator. Connections with the nucleator
and the surfactor. Computational implications.

3. Open questions, final discussion.
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The invariator principle and its applications

Computational problems

(). To exploit the flower formula S(0Y') = 4EA(H;) we have to compute the flower area of any planar convex set.

(i). To exploit the wedge formula V(Y') = 2z EV(W;) we have to compute the mean wedge volume of any planar
set.

Both problems (i), (ii) have been solved for an arbitrary planar convex n-gon K in the following two cases:

(@). Interior pivotal point O € K, (Cruz-Orive LM (2011) J. Microscopy 243, 86-102).

(b). Exterior pivotal point O ¢ K.

Next we concentrate on case (a).
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Flower area of a planar convex set with smooth boundary

Consider a compact convex set K ¢ R? such that O € K°, with boundary 9K of class C? admitting the following
parametric equations,

0K —= {(X, Y)eR?: X=X(t), X =Y(t), (0<t< 27r)}.

The parametric equations of the support functionh g, namely of the boundary 0Hy of the flower Hy of K with
respect to O, are the following,

) XY () - X(OY'()
{x<t> — S w0, w0 = TR

CX'(t), (0<t< 271')}

Hint of Proof.P(x(t),y(t)) is the intersection between the tangent to0K at the point M (X (¢),Y (¢)) and the normal
to this tangent from O. Moreover,

1/2” (X'OY (1) - XOY' O [X()Y"(1) - X"(6)Y' (1)
0

2w 2r
A(Hg) = %/O A (w) dw = %/o A2 (1) W' (t) dt = = X0 + Y’2(t)]2 dt.
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Case of an ellipse

Let 0K be an ellipse of principal semiaxes 0 < m < M < oo , and let (zg,y9) € K represent the rectangular
coordinates of the pivotal point with respect to the ellipse centre. Shift the origin to this pivotal point. Then,

K - X(t) = M cost — x,
1Y) =msint—yy, (0<1t<2m).

A(HE) = Z(M? +m? +12),

where r? := 23 + 3.

Pivotal
section

Flowers of identical areas if r is fixed
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Flower area of a convex polygon

A pivotal section of a convex patrticle is a.s. convex. It can be approximated by a convex n-gon with the required
accuracy for sufficiently large n.

Consider a pivotal polygonal section of a convex polyhedron.

P

A Vl (‘

\)

Ht

Convex polyhedron Pivotal section Flower

A useful representation of the flower of a convex polygon K :

Hi = | Baz/2:1I21/2), (O € K°).
2€0K
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P Calka’s formula for the flower area of a convex polygon

Vir1(X k+1,Yk+1)

1 n
A(Hg) = 3 Z R 1 (Z1s Zjsr, Fir)
k=1

{(ri, i)} := polar coords. of the vertices, {(p;,6;)} := normal coords. of the sides,
R:=({ri}{ {rity),  F={eli {eitl),  Zi= {0}, {6 +27}}),

P(wi,wa, @) :=sin (2(wy — ¢)) — sin (2(w1 — ¢)) + 2(wz — w1),

vi(z1,y1) IS the rightmost vertex.

(Calka (2003) AAP 35, 27-46, Calka (2009) personal communication).
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P Calka’s formula: Hint of proof

When K is a convex polygon its flower Hy is

Hyg = U BQ((Tk/Q,QOk),’I“k/Z),
k=1

namely the union of the »n disks whose diameters are the radius vectors of the vertices. Consequently,

hi(w) = T'k+41 COS (w— S0k+1)a w € [0, 9k+1),

Z /Zk+1

Zi41
:—Z/ R,H_lcos (w— Fyq) dw,

and,

from which the result follows
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Mean wedge volume of a convex polygon (i)

VY)=2rE{V(W)}, V(Wy) :=EV{W (w;t)|t}

Purpose : To find an exact formula for V(W;).
First step : For fixed ¢ € $2 and for a given w € [0,27), compute V{W (w;t)} by a simplicial decomposition:

K+ (w)
L 105 ()

Wedge set
W (w)

<V
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Mean wedge volume of a convex polygon (ii)

Second step : Compute

27
EV{W ()} = 2i / VW ()} dw.

T Jo

The main task is to identify the integration subranges. This is equivalent to identifying the vertices of the subpolygon
K4 (w) for each w € [0,2m).

L 117 ()
Vk
<2
Vi+1 '
Subpolygon identification Subrange identification

Convex n-gon

problem problem
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Mean wedge volume of a convex polygon (iii)

A tool to solve the identification problems: The ’extended polygon’.

Sk+n

'Extended polygon’ K¢ of K

. No identification problems anymore
(2n ’vertices’) P y
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Mean wedge volume of a convex polygon (iv): Exact formula

The mean wedge volume associated with a convex n—gon K whose interior contains the origin can be expressed
as follows,

12n

2w ELV{W (W)} = ¢ Y { PBE a1 (B Py, Fin Z3)
k=1

k+n—1

+ Y PiLi- [Rio(Fy, Figr, i) + Rig1tba(Fy Frar, Fign))
i=k+1

- Pk+nR]2g+nw1(Fk7 Fk—f—h Fk—i—m Zk+n)}7

where the angle vectors F,Z and the length vectors R, P, L. are 4n-vectors defined on the extended polygon,
whereas
P1(wi,we, ¢, 0) : = sin (2¢ — 0 — wa) — sin (2¢ — 0 — w1)

) tan ((wg — 0)/2+m/4)
+ cos” (¢ — 0) - log (tan((wl —0)/2+ 7r/4)>’

Pa(w1, w2, @) := cos (wy — @) — cos (w1 — @). O

10



STEREOLOGY COURSE Luis M. Cruz-Orive

Mean wedge volume of a convex polygon (iv): Approximate formula for large n

Monte Carlo integration with N steps:

N
~ 2 ) 2 m .
2m BLVAW ()} = = ;V{W(wi)}, wi=(U+i-1)-F+5,i=12..N, U~TUR(,1).
/[/:
An unbiased estimator of the mean wedge volume associated with a convex n—gon K whose interior contains the

origin can be computed as follows,

N
~ 2 1
2r B, VW (w)} = WW ‘5 Z{Pk(i)R%(iHﬂ/’(wi,Fk(z‘)+1a Zk(z'))
=1
k(i)+n—1
+ Z P;L; - [Rj cos (wi — Fj) + Rjyqcos (wi — Fj+1)]
J=k(i)+1

- Pk(i)+nR]29(i)+n1/} (wi, Fr(iyrns Zk(i)—i—n) },
where the angle vectors F,Z and the length vectors R, P, L are defined as before; the index k(7) is such that

the axis Lyjg(w;) hits the sides Sy(;) and Sy ;)4., of the extended polygon, and

cos? (w — ¢)
sin (w—46)

Plw, ¢,0) =

Furthermore,
Var{EwV{W(w)}} —O(N™®), ae[24]

11
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The mean wedge volume of a disk

T

Ball and pivotal section Pivotal section

An UE of the volume of the ball is,
V(YA = 20E,V{W(w)} = gqﬁ [(7 n )\Q)E()\Q) - 4(1 - AQ)K(A2)], A=1/re(0,1),

where K, F represent the complete elliptic integrals of the first and second kinds, respectively. Note that
V(Y;0) = (4/3)mr3,

Approximating the disk by a regular polygon of n = 5000 vertices, the Monte Carlo approximation yielded 6 exact
digits of XA/(Y; A) for A =0.1,0.3,0.7,0.9, with N = 20 steps. Real computing time: 2s. With the exact formula: 102s.

12
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Mean volume weighted surface area and volume of cemented carbide grains (i)

Material. Cemented carbides constitute a group of powder metallurgical materials produced by sintering, and
characterized by a very high hardness and wear resistance. Their microstructure consists of hard tungsten carbide
(WC) grains embedded in a ductile cobalt (Co) matrix.

_ Ex(WX)
~ Ex(W)

, here we want Ey-(.5), Ey (V).

13
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Mean volume weighted surface area and volume of cemented carbide grains (ii)

Let 1 < p < oo be the number of test points hitting grains, and let s;, v; denote unbiased estimators of the surface
area and the volume of the grain hit by the i—th test point, respectively, (i = 1,2, ...,p). Because the mentioned
grain is volume-weighted, the estimators:

D 5=

Z:

bS]

p
Z . where F; := flower area,

Sy =

'@IH
’Blrb

T
v = — E W;, where W; := mean wedge volume,
p
i=1

<

=

Il
S
=

1

7

are ratio unbiased for the target volume weighted means Ey S and Ey 'V, respectively. In shorthand,

14



STEREOLOGY COURSE

Luis M. Cruz-Orive

Mean volume weighted surface area and volume of cemented carbide grains (iii)

Results for the cemented carbide grains.
The 1997 results were reported in Karlsson & C-O (1997). For the “surfactor”
and “PSI” (point sampled intercepts) methods, see the mentioned study.

Quadrat # polygons A, ;ym? Sy = 4F, pm? oy = 20W, pm?
1 20 21.24 144.9 135.5

2 17 32.36 209.3 233.6

3 16 24.76 160.1 160.3

4 17 21.44 142.5 124.9

Pool 70 24.80 (10.4%) 163.4 (9.5%) 162.4 (15.0%)
Results of 1997 Sy pm?, surfactor Ty pm?3, PSI

154.5 (4.4%)

161.3(23.7%)

15
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Uniqueness properties of the invariator

The mean wedge volume is the averaged nucleator

Bounded particle: Y C Bs C RS,
Mean wedge volume representation of the particle volume:

V(Y)=2rE,E,V{W(w;t)}.

Nucleator representation (to simplify the notation suppose for the moment that Y is star shaped with respect to
an interior pivotal point O):

V()= TEE] (o).

Proposition 1. For any pivotal section of a particle with respect to an interior pivotal point, namely for each
orientation ¢ € S$2 of the pivotal plane, the following identity holds,

EV{Wiwit)) = s Eo{rl(win)}.

that is, the mean wedge volume coincides with 2/3 times the averaged third power of the nucleator ray length.

16
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Proof. For each t € §2 and each w € [0,27),

w;t)

h(
V{W (w;t)} = /0 [(r,w;t) rdr.

Consider a point of unsigned abscissa « along the p—line with respect to an arbitrary origin on this line. Then clearly,

du,

[(r,w;t :/
( ) (YNL3(0,6))NL3(rwit)

and the length elements du and dr are orthogonal. Thus dz := dudr is the area element at a point z in the pivotal
plane. Let (p, ), (p > 0,0 < ¢ < 27) denote the polar coordinates of x with respect to the fixed axis Ox;.

17
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Then r = p|cos(w — ¢)| and we can write,

1 ™
E,V{W(w;t)} = — | dw p|cos (w — p)|dx
21 Jo YNL3(0,t)

1

21 Jynr(

1
= —/ pdx
T JYynL3(0,t)

1 [27 p+(5t)
= / dy / p*dp
7™ Jo 0

= e}

™
pdx/ | cos (w — ¢)|dw
0,) 0

18
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Computation of the mean wedge volume defined on a convex polygon

via the averaged nucleator: a vast improvement on Cruz-Orive (2011)
Corollary 1 . For a convex n—gon K C R? the mean volume of the wedge set Wi (w) defined on K with respect
to an arbitrary pivotal point in its plane may be expressed as follows,

1 n
2m EsV{Wk (@)} = 5 > 0k 90k P Oh),
k=1
where
sin (wa —¢)  sin (w1 —0)
cos? (wg — 6)  cos?(wy — 0)

P(wi,we,0) : =

tan ((wy — 0)/2 + w/4)
If O & K°, then K must be contained in the upper half plane.

T log (tan (w2 —0)/2 + 7r/4)).

Proof. For k = 1,2,...,n let pi(w), w € [vr, prr1) denote the radial function of 0K. Bearing in mind that
pr(w) cos (w — 6;) = pg, by virtue of Proposition 1 we have,

Pr+1 Pr+1 dw
21 EL,V{W (w; t)} Z/ Zpk/ o o)

On the other hand,

/ dz lsimac_l_l1 ¢ (.’E+7T)+O
== —logtan [ = + — ,
cos3z  2coslz 2 08 2

whereby Corollary 1 follows.

19
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Checking the new mean wedge volume formula
Assume that the particle Y ¢ R? is a finite ball. The following exact results have been checked numerically with
the formula.
Case of an interior pivotal point

Ball and pivotal section Pivotal section Wedge

2ELV{W(w)} = gr?’ [(7 + )\2)E()\2) - 4(1 - )\Q)K(AQ)], X:=1/r e (0,1)
Case of an exterior pivotal point

Ball and pivotal section Wedges with exterior pivotal point O

2 EL V(W (w)} = % [)\2(7 + )\Q)E(/\_Z) - ()\2 + 3) ()\2 - 1)K(A‘2)], Ai=1/r>1

20
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The integrated surfactor is the flower area

For a convex particle Y C R? containing the pivotal point, the flower formula for the particle surface area reads,

S(0Y) = 4E{A(Hy)} = 2[Et{/027r h? dw}

Alternatively, the surfactor representation is,

2w
S(0Y) = 4rm [Et[E@{pQ(l + a tan oz)} = 2[Et{/ p*(1+ a tan ) dap}
0

AYNL5(0,1))

The next proposition states that the two expressions in curly brackets coincide for each ¢ € $2.

21
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Case of a convex particle with smooth boundary

Proposition 2. For each pivotal section of a convex particle with boundary of class C? containing the pivotal point,
the following identity holds,

27 2T
/ p?(1+ a tana)dp = / h? dw.
0 0

Lemma 1. The flower area A(Hy) of a planar convex set K with boundary of class C? containing the origin may
be expressed as follows,

1 2
A(Hg) = A(K) + 5/ p? sin? o dw,
0

where the angle « is defined as in Eq. 24. Equivalently,

27 2 27
/ h? dw = / o2 dop —l—/ p? sin? a dw.
0 0 0

Proof 1 of Lemma 1. Clear from the figure.

22
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Proof 2 of Lemma 1. The ordinary area element dA in polar coordinates is (1/2) p> dp. However, for the present
purposes we need a different representation. The area element may be regarded as an elementary triangle OM M’
of height pcosa and base sinadp + pcosady, see the figure.

Therefore,
dA = (1/2)psinacosadp + (1/2)p* cos® adp = (1/2) ppl, sin acos adar + (1/2) p? cos® ade,
where pl, := dp/da. Thus,
27 27
2A(K) = / pph, sin a cos acda + / p? cos® adep.
0 0

Integration by parts with « = sinacosa and dv = pp/, da yields,

2 1 2
/ ppl, sinacosada = —3 / p? (C082 o — sin? a) da.
0 0

Recalling that «« = ¢ — w and pcosa = h, simplification leads to the required result.

23
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Proof of Proposition 2. From the right hand side figure below we obtain the key relation

Therefore,

!/
dp_p_¢

tan o = = .
pdp  p

AYNL5(0,1))

27 27
/ pPo tanadyp = / pp:poz de.
0 0

Integration by parts with « = o and dv = ppfp dy yields,

2T 1 21 1 21 1 2T
/ pza tanadp = ——/ p2 da = ——/ p2 dy + —/ p2 (sin2 a 4 cos? 04) dw.
0 2 Jo 2 Jo 2 Jo

24
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Bearing in mind that pcosa = h

27 27 1 27 1 27 1 27
/ p2(1—|—atana)dg0:/ p2dg0——/ p? dap—l——/ p? sin? a dw—l——/ h? dw
0 0 2 Jo 2 Jo 2 Jo
1 27 1 27 1 27 1 27
:—/ h2dw——/ p?sin’ o dw—|—§/ p?sin’ o dw—|—§/ h?dw (Lemma 1)
0 0 0 0

2 2

27
= / h? dw. O
0

25
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CASE OF A CONVEX POLYHEDRAL PARTICLE

Proposition 2 has been proved under the assumption that the particle Y has a unique tangent plane at every point
of its boundary. Because this property may look restrictive, here we assume that Y is a convex polyhedron. Thus,
every pivotal section is almost surely a convex polygon.

Proposition 3. Proposition 2 holds also for any convex n—gon with an interior pivotal point.

Proof. Recalling that p;(w)cos (w — 6;) = pr, we can write,

2n Ph41
1 tana) d (1 ta de,
./0 p?(1+ a tana)de = Z / cos2 + atana)de

where « := ¢ — 6}, in the preceding integrand. On the other hand, by Calka’s formula,

n

2n 1
/0 h?dw = 1 > ria[CBrar — or41) — S0k — rr1));

k=1

((x) := 2z + sin (2x).

Thus, the right hand sides of the preceding two equations must coincide. This is readily verified on substituting
the following results

1 t 1 1
/wdx: §tanx—|—— a:2

C
x 2 cos t0

COS i

pr, = 7 €08 (0 — o) = 141 €08 (0 — Pry1),

into the right hand side of the former equation, and simplifying.

26
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Flower of a convex set with exterior pivotal point: A glimpse

ho(w)

(X0:Yo) -~

Support function h (w) with
exterior pivotal point O Support set (flower) H Unwrapped graph of h (c)

h(w) = xpcosw + yosinw + ho(w), w € [0,27),

2
A(Hg) = /0 h(w) |h(w)] dw.

27
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Flowers of an ellipse with exterior pivotal point

! T3 II 2
[=3, M=1, m=1/2

A(Hk) = 10.9869 10.7190 10.2063 9.9597

[\ / ;\\/ ﬂ |

\/ IV \/

\/

With an exterior pivotal point, the flower area of an
ellipse depends not only on M, m, [, but also on «.

28
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