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Part I

1. Classical construction of motion invariant test probes. Crofton
formulae. Applications to stereology. Exercise 1.

2. Motion invariant test lines in 3 . Invariator construction. Applications to stereology. Exercise 2.

3. Case of a convex particle. Surface area in terms of the flower set.
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Classical construction of motion invariant test probes.
Crofton formulae. Applications to stereology.

Invariant test probes in : Buffon’s needle problem

George Louis Leclerc,
Comte de Buffon (1707-1788)

Buffon’s needle problem (1777)
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Invariant density for straight lines in :

For straight lines hitting a disk of diameter , the joint probability element of is,
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Buffon-Steinhaus estimation of curve length in . Preliminaries
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• Rectifiable curve:
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straight line segment, length
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Buffon’s answer,

Apply the Monotone Convergence Theorem (Beppo Levi) (e.g. Bogachev, V.I. (2007) Measure Theory, Vol.1):

(Voss, F. (2005) Diplomarbeit, Univ. D-Ulm).
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Buffon-Steinhaus test system
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• Choose an isotropic orientation using , e.g. .

• On , fix a fundamental half open segment (’tile’) of length . Construct the partition ,

where and is a translation of modulus along which brings the tile to coincide

with leaving the partition invariant for each and .

• Independently of choose a uniform random point , namely with , e.g.

.

• The system of parallel straight lines

is a test system of parallel straight lines with motion invariant density.
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Buffon-Steinhaus estimation of curve length in

Next, apply a particular version of Santaló’s theorem for test systems (Santaló, L.A. (1976) Integral Geometry and

Geometric Probability, Ch. 8),

k;t

0;t

0;t

Recalling that ,

from which we can write an unbiased point estimator of the curve length in terms of known constants and the

observed intersection count,
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Invariant test lines and planes in
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Estimation of surface area and volume with test lines in . Preliminaries
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• surface element of area

• volume element of volume ,
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Estimation of surface area and volume with the Fakir Probe
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Making successive use of the Monotone Convergence Theorem and of Santaló’s Theorem, the surface area and

the volume of a bounded subset can be expressed as follows,

from which the corresponding unbiased point estimators are straightforward.
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An equivalence
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By virtue of the Petkantschin-Santaló identity, a motion invariant straight line in is equivalent to a motion

invariant straight line within a motion invariant plane:
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Application: IUR test lines on isotropic Cavalieri sections
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d

With the preceding results, application of Santaló’s Theorem leads to the following representations,
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Estimation of volume and surface area with test planes in . Preliminaries
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Estimation of surface area and volume with the isotropic Cavalieri design
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Making successive use of the Monotone Convergence Theorem and of Santaló’s Theorem,

and

are unbiased estimators of the surface area and the volume of a bounded subset , respectively. Further,

if the sections are analysed with an IUR square grid test system of size , then the corresponding two-stage

unbiased estimators read,

and
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An aid to the isotropic Cavalieri design: The antithetic isector
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The invariator principle and its applications

Invariator construction of a motion invariant test line in
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Thus, the invariator principle states that a point-weighted test line (= a p-line) on a pivotal plane is

equivalent to a test line with a motion invariant density in three dimensional space.
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Probability element for a p-line
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Surface area and volume with a p-line
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Crofton formulae:
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18



STEREOLOGY COURSE Luis M. Cruz-Orive

Surface area and volume with the Invariator Test Grid
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Implementation of the invariator grid
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Application: rat brain surface area and volume with the Invariator
(Cruz-Orive LM, Ramos-Herrera ML & Artacho-Pérula E (2010) J. Microscopy)

Magnetic Resonance Imaging
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c

Unbiased estimators (with square grid generator of tile area a ) for each brain:
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Classical isotropic Cavalieri design with antithetic arrangement
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One stage UE’s:

Two stage UE’s (with square grid of size d to measure the sections):
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Application to rat brain (contd.)

Exhaustive MRI isotropic Cavalieri series of brain #5 with antithetic

arrangement of the two brain hemispheres. Slice thickness = 1.2 mm.

5 mm

5 mm

21

3 4 6 75 8 9

10 11 13 1412 15 16

17 18 20 2119 22 23

24 25 27 2826 29 30

1 cm

In this brain the approximately equatorial section #14 was used for the invariator.

Sections {7, 10, 13, 16, 19, 22} constitute a systematic subsample of period T = 3.6 mm.
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Rat brain surface area and volume: results
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’Exact’ := One stage estimators from isotropic Cavalieri series.

In this way the biological variance among brains could be estimated fairly accurately.

Subtraction of the biological variance from the observed variance of the invariator

data yielded a mean individual invariator of about 30% for both and .

Conclusion: Use the invariator for cell populations, say, rather than individual organs.
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The Pivotal Tessellation
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The Poisson Pivotal Tessellation

O O

For a connected region from the intersection of a Poisson pivotal tessellation with a disk of radius we have,

Mean number of vertices, or of sides

Mean boundary length

Mean area

INTERPRETATION ?

(Cruz-Orive (2009) IAS 28, 63–67.)
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Case of a convex particle: Surface area from the ’FLOWER’ of a pivotal section
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O

L2
3 (0, t )

Y

O

Ht

L1
2 (z; t )

z

Flower of the convex pivotal section :

with probability
with probability
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Interlude: A duality
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Special case: Surface area of a triaxial ellipsoid
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Remark:

convex.
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Volume of an arbitrary particle via the mean WEDGE volume
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Hint of proof. Use Crofton’s formula with ,

2
+

But the integral

can be interpreted as the volume of a well defined 45 ’ WEDGE SET’ . The result follows if, or each pivotal

section, i.e. for each , we set
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