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7. Properties of the Minkowski tensors

Recall that
Φr ,0

n (K ) = Ψr (K ) =
1
r !

∫
K

x r dx

and
Φr ,s

k (K ) =
1

r !s!

ωn−k

ωn−k+s

∫
Σn

x r us Λk (K , d(x ,u))

for K ∈ Kn, k = 1, . . . ,n − 1 and r , s ∈ N0.

Recall also the convention

Φr ,s
k := 0 if k /∈ {0, . . . ,n} or r /∈ N0 or s /∈ N0 or k = n, s 6= 0.
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Steiner-type formula:

Ψr (K + ρBn) =
n+r∑
k=0

ρn+r−kκn+r−kV (r)
k (K ),

where
V (r)

k =
∑
s∈N0

Φr−s,s
k−r+s.

For r = 0, this reduces to the classical Steiner formula for the
volume.

We indicate the main steps of a proof of this formula.

For this, we require an extension of spherical coordinates, with
the sphere replaced by the boundary of a general convex body.
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First, the support measures satisfy a Steiner-type formula:

Write Kρ := K + ρBn and define the mapping τρ : Σn → Σn by

τρ(x ,u) := (x + ρu,u).

Then

2Λn−1(Kρ, ·) =
n−1∑
k=0

ρn−k−1ωn−kτρΛk (K , ·),

where τρΛk (K , ·) is the image measure of Λk (K , ·) under τρ.

Using this, the following formula can be proved:
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Lemma 7.1 Let K ∈ Kn, and let f : Rn \ K → R be a
nonnegative measurable function. Then∫

Rn\K
f (x) dx

=
n−1∑
j=0

ωn−j

∫ ∞
0

tn−j−1
∫

Σn
f (x + tu)Λj(K , d(x ,u)) dt .

This is used to compute the last term of

Ψr (K + ρBn) = Ψr (K ) +
1
r !

∫
Kρ\K

x r dx .
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∫
Kρ\K

x r dx

=
n−1∑
j=0

ωn−j

∫ ρ

0
tn−j−1

∫
Σn

(x + tu)r Λj(K , d(x ,u)) dt

=
n−1∑
j=0

ωn−j

∫ ρ

0
tn−j−1

∫
Σn

r∑
s=0

(
r
s

)
x r−susts Λj(K , d(x ,u)) dt

=
n−1∑
j=0

r∑
s=0

ωn−j

(
r
s

)
ρn−j+s

n − j + s

∫
Σn

x r−sus Λj(K , d(x ,u)).

Introducing the index k = j + r − s and using the definition of
Φr ,s

k , we obtain the assertion.
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For the next goals, recall Hadwiger’s characterization theorem.

It determines the real vector space of all mappings ϕ : Kn → R
which are

• valuations,
• rigid motion invariant,
• continuous.

The result is that this vector space is spanned by the intrinsic
volumes V0, . . . ,Vn.

V0, . . . ,Vn are linearly independent, because they have
different degrees of homogeneity.

Hence, the vector space in question has dimension n + 1.
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Extensions to higher ranks?

Rank 1 is an old result (Hadwiger and R.S. 1971):

Theorem 7.1 The real vector space of all mappings
ψ : Kn → Rn which are
• valuations,
• rotation equivariant, and such that ψ(K + t)− ψ(K ) is always
parallel to t,
• continuous,

is spanned by the mappings

K 7→
∫

K
x Cj(K , dx), j = 0, . . . ,n,

(the moment vectors of the curvature measures).
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Again, the mappings

K 7→
∫

K
x Cj(K , dx), j = 0, . . . ,n,

have different degrees of homogeneity and hence are linearly
independent.

The dimension is again n + 1, since the term of degree n + 1 in
the Steiner formula for Φn,0

1 is∫
Bn

x dx = 0.

The cases of higher ranks are more complicated.
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Each Minkowski tensor Φr ,s
k defines a mapping

Γ : Kn → Tp, p = r + s,

which is
• a valuation,
• continuous,
• isometry covariant, i.e., it is rotation covariant,

Γ(ϑK ) = ϑΓ(K ) for K ∈ Kn and ϑ ∈ O(n),

and has polynomial translation behaviour,

Γ(K + t) =

p∑
j=0

Γp−j(K )t j for K ∈ Kn and t ∈ Rn,

with tensors Γp−j(K ) ∈ Tp−j , independent of t .
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A new aspect for ranks ≥ 2: There is constant mapping

Γ : Kn → T2

that has all the listed properties, namely the metric tensor Q,

Q(a,b) := 〈a,b〉 for a,b ∈ Rn.

The constant mapping Γ = Q is trivially a valuation, continuous,
and has polynomial behaviour under translations. Since

Q(a,b) = 〈a,b〉 = 〈ϑ−1a, ϑ−1b〉 = (ϑQ)(a,b),

it is also rotation covariant.

It follows that the mappings

K 7→ QmΦr ,s
k (K )

have the same properties.
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Theorem 7.2 (Alesker 1999) Let p ∈ N0. The real vector space
of all mappings Γ : Kn → Tp which are
• valuations,
• isometry covariant,
• continuous,
is spanned by the basic tensor valuations

QmΦr ,s
k ,

where m, r , s ∈ N0 satisfy 2m + r + s = p and where
k ∈ {0, . . . ,n}, but s = 0 if k = n.

For p ≥ 2, the basic tensor valuations are not linearly
independent:

They satisfy the McMullen relations.
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The McMullen relations

The crucial relation is the identity

QΦr−1,0
n = 2πΦr ,1

n−1.

Explicitly, this reads

Q
1

(r − 1)!

∫
K

x r−1 dx =
2
r !

∫
Σn

x r u Λn−1(K , d(x ,u)).

For smooth K (which is sufficient to consider), this reads

Q
1

(r − 1)!

∫
K

x r−1 dx =
1
r !

∫
bd K

x r u(K , x)Hn−1(dx),

where u(K , x) is the unique outer unit normal vector of K at its
boundary point x .

This invites application of the divergence theorem.
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x1, . . . , xn coordinates of x ∈ Rn w.r.t. ON basis (e1, . . . ,en)

For given i1, . . . , ir , j ∈ {1, . . . ,n}, define a vector field v by

v(x) := xi1 · · · xir ej .

To this and the convex body K , apply the divergence theorem∫
K

div v(x) dx =

∫
bd K
〈v(x),u(K , x)〉Hn−1(dx).

This yields∫
K

r∑
k=1

δik j xi1 · · · x̌ik · · · xir dx =

∫
bd K

xi1 · · · xir 〈ej ,u(K , x)〉Hn−1(dx).

(δ is the Kronecker symbol, and x̌m indicates that xm is deleted.)
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Using tensor notation, the obtained equation∫
K

r∑
k=1

δik j xi1 · · · x̌ik · · · xir dx =

∫
bd K

xi1 · · · xir 〈ej ,u(K , x)〉Hn−1(dx)

can be written as

r∑
k=1

Q(eik ,ej)Ψr−1(K )(ei1 , . . . , ěik , . . . ,eir )

(∗)

=
1

(r − 1)!

∫
bd K

x r (ei1 , . . . ,eir )u(K , x)(ej)Hn−1(dx).

It remains to see that this is the identity we want.
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What we want is

QΨr−1(K ) =
1
r !

∫
bd K

x r u(K , x)Hn−1(dx). (1)

We need to check this only on (r + 1)-tuples (ei1 , . . . ,eir+1) of
basis vectors.

Left side of (1): By the definition of the symmetric tensor
product,

(r + 1)!(QΨr−1(K ))(ei1 , . . . ,eir+1)

=
∑

σ∈S(r+1)

Q(eiσ(1)
,eiσ(2)

)Ψr−1(K )(eiσ(3)
, . . . ,eiσ(r+1)

). (2)
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Right side of (1):

(r + 1)!
1
r !

∫
bd K

(x r u(K , x))(ei1 , . . . ,eir+1)Hn−1(dx)

=
1
r !

∑
σ∈S(r+1)

∫
bd K

x r (eiσ(1)
, . . . ,eiσ(r)

)u(K , x)(eiσ(r+1)
)Hn−1(dx)

using (*)

=
1
r

r∑
k=1

∑
σ∈S(r+1)

Q(eσ(ik ),eσ(ir+1))

×Ψr−1(K )(eσ(i1), . . . , ěσ(ik ), . . . ,eσ(ir ))

=
∑

σ∈S(r+1)

Q(eσ(1),eσ(i2))Ψr−1(K )(eσ(3), . . . ,eσ(ir+1)).

This is the same as in (2). 2
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From the obtained relation

QΦr−1,0
n = 2πΦr ,1

n−1,

further identities can be derived by applying it to parallel bodies.

For this, we use strictly convex K and write the identity in the
form

QΨr−1(K ) =
1
r !

∫
Sn−1

x(K ,u)r u Sn−1(K , du),

where x(K ,u) is the unique boundary point of K at which u is
attained as outer normal vector.

We apply this to K + ρBn.

For the left side we get, using the Steiner formula ,

QΨr−1(K + ρBn) =
n+r−1∑

k=0

ρn+r−1−kκn+r−1−kQV (r−1)
k (K ).
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For the right side, we use

x(K + ρBn,u) = x(K ,u) + ρu

and the Steiner-type formula

Sn−1(K + ρBn, ·) =
n−1∑
i=0

ρn−1−i
(

n − 1
i

)
Si(K , ·).

Inserting this and rearranging, we get

Theorem 7.3 (McMullen 1997) For r ∈ N with r ≥ 2 and
k ∈ {0, . . . ,n + r − 2},

Q
∑
s∈N0

Φr−s,s−2
k−r+s = 2π

∑
s∈N0

sΦr−s,s
k−r+s.
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For rank one, the McMullen relations also hold, but only
express the well-known fact that∫

Sn−1
u Sj(K , du) = 0

for j = 0, . . . ,n − 1.

For rank two, the McMullen relations are given by

QΦ0,0
k = 2πΦ1,1

k−1 + 4πΦ0,2
k , k = 0, . . . ,n.

We recall that

Φ0,0
k (K ) = Vk ,

Φ1,1
k−1(K ) = ak

∫
Σn

xu Λk−1(K , d(x ,u)) for k ≥ 1, Φ1,1
−1(K ) = 0,

Φ0,2
k (K ) = bk

∫
Σn

u2 Λk (K , d(x ,u)) for k ≤ n − 1, Φ0,2
n (K ) = 0,

with positive constants ak ,bk .
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The following was proved by Hug, R.S. and R. Schuster (2008).

Theorem 7.4 Any nontrivial linear relation between basic
tensor valuations QmΦr ,s

k can be obtained by multiplying
suitable McMullen relations by powers of Q and by taking linear
combinations of relations obtained in this way.

This opened the way to the determination of dimensions and
bases.

Let Tp,k denote the real vector space of all mappings Kn → Tp

that are continuous, isometry covariant valuations and
homogeneous of degree k .

dim Tp,k has been determined loc. cit.
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Example for explicit bases in rank two:

I T2,0: a basis is {QΦ0,0
0 }.

I T2,1: a basis is {Φ0,2
1 ,QΦ0,0

1 }.
I T2,k for k = 2, . . . ,n − 1: a basis is {Φ0,2

k ,Φ2,0
k−2,QΦ0,0

k }.
I T2,n: a basis is {Φ2,0

n−2,QΦ0,0
n }.

I T2,k for k = n + 1,n + 2: a basis is {Φ2,0
k−2}.

Thus, the vector space of continuous, isometry covariant tensor
valuations of rank two has dimension 3n + 1.
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8. Local tensor valuations

The Minkowski tensors have measure-valued extensions.

We abbreviate
cr ,s

n,k :=
1

r !s!

ωn−k

ωn−k+s

and define the local Minkowski tensors

φr ,s
k : Kn × B(Σn)→ T r+s

by

φr ,s
k (K , η) := cr ,s

n,k

∫
η

x r us Λk (K , d(x ,u))

for η ∈ B(Σn), r , s ∈ N0, k ∈ {0, . . . ,n − 1}.
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For η ∈ B(Σn), t ∈ Rn and ϑ ∈ O(n), write

η + t := {(x + t ,u) : (x ,u) ∈ η}
ϑη := {(ϑx , ϑu) : (x ,u) ∈ η}

The following properties of a mapping Γ : Kn × B(Σn)→ Tp will
be important.

• Γ has polynomial translation behaviour of degree q, where
0 ≤ q ≤ p, if

Γ(K + t , η + t) =

q∑
j=0

1
j!

Γp−j(K , η)t j

with tensors Γp−j(K , η) ∈ Tp−j , for K ∈ Kn, η ∈ B(Σn), t ∈ Rn.

• Γ is rotation covariant if Γ(ϑK , ϑη) = ϑΓ(K , η) for K ∈ Kn,
η ∈ B(Σn), ϑ ∈ O(n).
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• Γ is isometry covariant (of degree q) if it has polynomial
translation behaviour of some degree q ≤ p (and hence of
degree p) and is rotation covariant.

• Γ is locally defined if for η ∈ B(Σn) and K ,K ′ ∈ Kn with
η ∩ Nor K = η ∩ Nor K ′ the equality Γ(K , η) = Γ(K ′, η) holds.

• If Γ(K , ·) is a Tp-valued measure for each K ∈ Kn, then Γ is
weakly continuous if for each sequence (Ki)i∈N of convex
bodies in Kn converging to a convex body K the relation

lim
i→∞

∫
Σn

f dΓ(Ki , ·) =

∫
Σn

f dΓ(K , ·)

holds for all continuous functions f : Σn → R.

In the previous definitions, the set Kn may be replaced by Pn.
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The local Minkowski tensor

Γ = φr ,s
k

has the following properties (they follow from properties of the
support measures):

• For each K ∈ Kn, Γ(K , ·) is a T r+s-valued measure,
• Γ is weakly continuous,

• For each η ∈ B(Σn), Γ(·, η) is measurable,

• For each η ∈ B(Σn), Γ(·, η) is a valuation,

• The mapping Γ is isometry covariant,

• The mapping Γ is locally defined.

Main goal: to determine all mappings with these properties
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Local tensor valuations on polytopes

P ∈ Pn a polytope
Fk (P) set of its k -dimensional faces
ν(P,F ) set of unit normal vectors of P at F

The local Minkowski tensors of a polytope P have the explicit
representation

φr ,s
k (P, η) = Cr ,s

n,k

∑
F∈Fk (P)

∫
F

∫
ν(P,F )

1η(x ,u)x r usHn−k−1(du)Hk (dx),

where
Cr ,s

n,k := (r !s!ωn−k+s)−1

and 1η is the characteristic function of η.
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This representation can be modified, retaining all the listed
properties, with the possible exception of weak continuity.

L ⊂ Rn linear subspace
πL : Rn → L orthogonal projection

QL(a,b) := 〈πLa, πLb〉 for a,b ∈ Rn.

Note that QϑL = ϑQL for ϑ ∈ O(n).

For a face F of P, the direction space of F is the linear
subspace parallel to aff F .
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The generalized local Minkowski tensors on polytopes are
defined by

φr ,s,j
k (P, η)

:= Cr ,s
n,k

∑
F∈Fk (P)

Q j
L(F )

∫
F

∫
ν(P,F )

1η(x ,u)x r usHn−k−1(du)Hk (dx),

for r , s, j , k ∈ N0 with 1 ≤ k ≤ n − 1. Further, φr ,s,0
0 := φr ,s

0 .

Properties of Γ = φr ,s,j
k :

• Γ(·, η) is a valuation
• Γ(P, ·) is a Tp-valued measure
• isometry covariant
• locally defined
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Theorem 8.1 For p ∈ N0, let Tp(Pn) denote the real vector
space of all mappings

Γ : Pn × B(Σn)→ Tp

with the following properties.

(a) Γ(P, ·) is a Tp-valued measure, for each P ∈ Pn;
(b) Γ is isometry covariant;
(c) Γ is locally defined.

Then a basis of Tp(Pn) is given by the mappings

Qmφr ,s,j
k ,

where m, r , s, j ∈ N0 satisfy 2m + 2j + r + s = p and where
k ∈ {0, . . . ,n − 1}, but j = 0 if k ∈ {0,n − 1}.
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Most of the theorem (slightly stronger assumptions, without
linear independence) was proved by R.S. 2013, the rest by Hug
and R.S. 2014.

By an induction argument, stepwise reducing the degree of the
polynomial translation behaviour, the proof of Theorem 8.1 can
be reduced to the translation invariant case.

Theorem 8.2 Let p ∈ N0. Let Γ : Pn × B(Σn)→ Tp be a
mapping with the following properties.
(a) Γ(P, ·) is a Tp-valued measure, for each P ∈ Pn;
(b) Γ is translation invariant and rotation covariant;
(c) Γ is locally defined.
Then Γ is a linear combination, with constant coefficients, of the
mappings Qmφ0,s,j

k , where m, s, j ∈ N0 satisfy 2m + 2j + s = p
and where k ∈ {0, . . . ,n − 1}, but j = 0 if k ∈ {0,n − 1}.
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Some elements of the proof of Theorem 8.2

To prove an equality for measures on B(Σn), it is sufficient to
prove equality on product sets β × ω, with β ∈ B(Rn) and
ω ∈ B(Sn−1). In this case

Γ(P, β × ω) =
n−1∑
k=0

∑
F∈Fk (P)

Γ(P, (β ∩ relint F )× (ω ∩ ν(P,F ))).

Therefore, we have to determine Γ(F , β × ω) if

• k ∈ {0, . . . ,n − 1}
• L ⊂ Rn is a k -dimensional linear subspace
• β ⊂ L is a bounded Borel set
• ω ⊂ Sn−1 ∩ L⊥ is a Borel set
• F ⊂ L is a k -dimensional polytope with β ⊂ relint F
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A standard characterization of Lebesgue measure yields

Γ(F , β × ω) = a(L, ω)Hk (β).

The crucial step is to show that the tensorial factor is of the form

a(L, ω) =

bp/2c∑
j=0

Qj
L

bp/2c∑
i=0

cpkijQi
L⊥

∫
ω

up−2j−2i Hn−k−1(du)

with real constants cpkij .

For this, two general lemmas are used.
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Lemma 8.1 Let L ⊂ Rn be a linear subspace. Let r ∈ N0, let
T ∈ T r be a tensor satisfying ϑT = T for each ϑ ∈ SO(n) that
fixes L⊥ pointwise. Then

T =

br/2c∑
j=0

Qj
Lπ
∗
L⊥T (r−2j)

with tensors T (r−2j) ∈ T r−2j(L⊥), j = 0, . . . , br/2c.

Here

(π∗L⊥T )(x1, . . . , xp) := T (πL⊥x1, . . . , πL⊥xp) for x1, . . . , xp ∈ Rn.

The proof of Lemma 8.1 is based on the fact that the algebra of
symmetric tensors on Rn is isomorphic to the polynomial
algebra on Rn, and it uses some manipulations with
polynomials.
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Lemma 8.2 Let r ∈ N0, and let µ : B(Sn−1)→ T r be a
T r -valued measure satisfying

µ(ϑω) = (ϑµ)(ω) for ω ∈ B(Sn−1) and ϑ ∈ O(n).

Then

µ(ω) =

br/2c∑
j=0

ajQj
∫
ω

ur−2j Hn−1(du), ω ∈ B(Sn−1),

with real constants aj , j = 0, . . . , br/2c.

The proof of Lemma 8.2 is based on a characterization of
spherical Lebesgue measure, the Radon–Nikodym theorem,
Lemma 8.1, invariance properties, and Lebesgue’s
differentiation theorem.
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