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Getting started

We consider maps

Γ : Pn×B(Rn×Sn−1)→ Tp or Γ : Kn×B(Rn×Sn−1)→ Tp

which are

(a) measure valued: Γ(K , ·) is a tensor measure.
(b) isometry covariant:
• Γ(K + t , η + t) is a tensor polynomial in t ∈ Rn,
• Γ(ϑK , ϑη) = ϑΓ(K , η) for ϑ ∈ O(n).

(c) locally defined: Γ(K , η) = Γ(K ′, η) whenever
η ∈ B(Rn × Sn−1) and η ∩ Nor K = η ∩ Nor K ′.

(d) weakly continuous: if limi→∞ Ki = K then

lim
i→∞

∫
Rn×Sn−1

f dΓ(Ki , ·) =

∫
Rn×Sn−1

f dΓ(K , ·)

for all continuous functions f : Rn × Sn−1 → R.
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Examples

1. For K ∈ Kn and η ∈ B(Rn × Sn−1)

φr ,s
k (K , η) := cr ,s

n,k

∫
η

x r us Λk (K , d(x ,u))

for r , s, k ∈ N0 with k ≤ n − 1.

Here Λk (K , ·) is the k -th support measure and x r us is a
symmetric tensor product.

2. For P ∈ Pn

φr ,s,j
k (P, η) := Cr ,s

n,k

∑
F∈Fk (P)

Q j
L(F )

∫
F

∫
ν(P,F )

1η(x ,u)x r usHn−k−1(du)Hk (dx)

for r , s, j , k ∈ N0 with 1 ≤ k ≤ n − 1; φr ,s,0
0 := φr ,s

0 .
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A local characterization theorem: polytopes

For p ∈ N0, let Tp(Pn) denote the real vector space of all
mappings Γ : Pn × B(Rn × Sn−1)→ Tp with the following
properties:

(a) Γ(P, ·) is a Tp-valued measure, for each P ∈ Pn;
(b) Γ is isometry covariant;
(c) Γ is locally defined.

Theorem 1 A basis of Tp(Pn) is given by the mappings

Qmφr ,s,j
k ,

where m, r , s, j ∈ N0 satisfy 2m + 2j + r + s = p and where
k ∈ {0, . . . ,n − 1}, but j = 0 if k ∈ {0,n − 1}.
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General convex bodies

Why did we not define φr ,s,j
k (K , ·) for K ∈ Kn and j ≥ 1?

At least for k = n − 1 we can replace Q j
L(F ) in

Cr ,s
n,n−1

∑
F∈Fn−1(P)

Q j
L(F )

∫
F

∫
ν(P,F )

1η(x ,u)x r usH0(du)Hn−1(dx)

by

Q j
L(F ) =

(
Q − u2

)j
=

j∑
i=0

(−1)i
(

j
i

)
Qj−i i2i

so that

φr ,s,j
n−1 =

j∑
i=0

(−1)i
(

j
i

)
(s + 2i)!ω1+s+2i

s!ω1+s
Qj−iφr ,s+2i

n−1 .
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Splitting wrt degree of homogeneity

Γ : Kn × B(Rn × Sn−1)→ Tp is homogeneous of degree k if

Γ(λK , λη) = λk Γ(K , η), K ∈ Kn, η ∈ B(Σn), λ > 0,

where λη := {(λx ,u) : (x ,u) ∈ η}.

Lemma Let p ∈ N0. Let Γ : Kn × B(Σn)→ Tp be such that
(a) Γ(K , ·) is a Tp-valued measure, for each K ∈ Kn;
(b) Γ is translation invariant and rotation covariant;
(c) Γ is locally defined;
(d) Γ is weakly continuous.

Then Γ =
∑n−1

k=0 Γk , where each Γk has properties (a)− (d) and
is homogeneous of degree k.
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Proof. The restriction Γ|Pn × B(Σn) has all the properties
required to apply the characterization result for polytopes.
Hence it is a linear combination of Qmφ0,s,j

k so that

Γ|Pn × B(Σn) =
n−1∑
k=0

Γk

with Γk : Pn × B(Σn)→ Tp. This shows that

Γ(λP, λη) =
n−1∑
k=0

λk Γk (P, η), P ∈ Pn, η ∈ B(Σn), λ > 0.

This relation can be inverted coordinate-wise, i.e.

Γk (P, η) =
n∑

r=1

bkr Γ(rP, rη), k = 0, . . . ,n − 1,

and used to define Γk for general convex bodies.
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Weakly continuous extension for j = 1

The normal bundle of K ∈ Kn is the (n − 1)-rectifiable set

Nor K := {(x ,u) ∈ ∂K × Sn−1 : 〈x ,u〉 = h(K ,u)}.

For Hn−1 almost all (x ,u) ∈ Nor K , the tangent space
Tann−1(K , (x ,u)) is an (n − 1)-dimensional linear subspace
spanned by a1(x ,u), . . . ,an−1(x ,u), where

ai(x ,u) :=

 1√
1 + ki(x ,u)2

bi(x ,u),
ki(x ,u)√

1 + ki(x ,u)2
bi(x ,u)

 ,

b1(x ,u), . . . ,bn−1(x ,u) is a suitably oriented ONB of u⊥, and
ki(x ,u) ∈ [0,∞].
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We define an (n − 1)-vector

aK (x ,u) := a1(x ,u) ∧ . . . ∧ an−1(x ,u),

which orients Tann−1(K , (x ,u)) and then an (n− 1)-dimensional
current in R2n by

TK :=
(
Hn−1 Nor K

)
∧ aK ,

the normal cycle of K . More explicitly,

TK (ϕ) =

∫
Nor K
〈aK (x ,u), ϕ(x ,u)〉Hn−1(d(x ,u)),

for all Hn−1 Nor K -integrable functions ϕ : R2n → ∧n−1 R2n.
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Lipschitz–Killing forms

Differential forms ϕk : R2n → ∧n−1 R2n, k ∈ {0, . . . ,n − 1}, of
degree n − 1 on R2n are defined by

ϕk (x ,u)(ξ1, . . . , ξn−1) :=

1
k !(n − 1− k)!ωn−k

∑
σ∈S(n−1)

sgn(σ)

〈
k∧

i=1

Π1ξσ(i) ∧
n−1∧

i=k+1

Π2ξσ(i) ∧ u,Ωn

〉
,

where ξ1, . . . , ξn−1 ∈ R2n = Rn × Rn.
A straightforward calculation shows that

〈aK (x ,u), ϕk (x ,u)〉 =
1

ωn−k

∑
|I|=n−1−k

∏
i∈I ki(x ,u)∏n−1

i=1

√
1 + ki(x ,u)2

for Hn−1 almost all (x ,u) ∈ Nor K , hence

TK (1ηϕk ) = Λk (K , η).
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Current representation of ϕr ,s,1
k

Let n ≥ 3, k ∈ {1, . . . ,n − 2} and r , s ∈ N0. Let (x ,u) ∈ R2n and
v = (v1, . . . , vr+s+2) ∈ (Rn)r+s+2. For ξ1, . . . , ξn−1 ∈ R2n, define

ϕ̃r ,s
k (x ,u; v; ξ1, . . . , ξn−1) :=

Cr ,s
n,k

(k − 1)!(n − 1− k)!
x r (v1, . . . , vr )us(vr+1, . . . , vr+s)

×
∑

σ∈S(n−1)

sgn(σ)
〈
vr+s+1,Π1ξσ(1)

〉〈
vr+s+2 ∧

k∧
i=2

Π1ξσ(i) ∧
n−1∧

i=k+1

Π2ξσ(i) ∧ u,Ωn

〉
.

For fixed x ,u,v, the map

ϕ̃r ,s
k (x ,u; v; ·) : (R2n)n−1 → R

is multilinear and alternating, hence an element of
∧n−1 R2n.
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Current representation of ϕr ,s,1
k

Symmetrization gives

ϕr ,s
k (x ,u; v; ξ1, . . . , ξn−1)

:=
1

(r + s + 2)!

∑
τ∈S(r+s+2)

ϕ̃r ,s
k (x ,u; vτ(1), . . . , vτ(r+s+2); ξ1, . . . , ξn−1).

Then

ϕr ,s
k (x ,u) : (ξ1, . . . , ξn−1) 7→ ϕr ,s

k (x ,u; · ; ξ1, . . . , ξn−1)

is an (n − 1)-covector of Tr+s+2, i.e. ∈ ∧n−1(R2n,Tr+s+2).
The map

ϕr ,s
k : R2n →

∧n−1
(R2n,Tr+s+2), (x ,u) 7→ ϕr ,s

k (x ,u),

is a differential form of degree n − 1 on R2n with coefficients in
Tr+s+2, i.e. ∈ En−1(R2n,Tr+s+2) := E(R2n,

∧n−1(R2n,Tr+s+2)).
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Properties

For (x ,u) ∈ R2n, a ∈ ∧n−1 R2n, ϑ ∈ O(n):

I 〈a, ϕr ,s
k (x ,u)〉 ∈ Tr+s+2,

I 〈ϑa, ϕr ,s
k (ϑx , ϑu)〉 = ϑ〈a, ϕr ,s

k (x ,u)〉.
where ϑξ := (ϑp, ϑq) for ξ = (p,q) ∈ Rn × Rn = R2n.

The following lemma justifies these definitions.

Lemma. If P ∈ Pn and η ∈ B(Σn), then

TP
(
1ηϕ

r ,s
k

)
= φr ,s,1

k (P, η).
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Proof For P ∈ Pn and η ∈ B(Σn), we show that

TP
(
1ηϕ̃

r ,s
k (· ; v; ·)

)
= Cr ,s

n,k

∑
F∈Fk (P)

QL(F )(vr+s+1, vr+s+2)

×
∫
η∩(F×ν(P,F ))

x r (v1, . . . , vr )us(vr+1, . . . , vr+s)Hn−1(d(x ,u)),

For this, we start from the disjoint decomposition

η ∩ Nor P =
n−1⋃
j=0

⋃
F∈Fj (P)

η ∩ (relint F × ν(P,F ))

and use information about ki(x ,u) ∈ {0,∞} available for
polytopes, when (x ,u) ∈ F × ν(P,F ) for a j-face F of P: exactly
j of the ki(x ,u) are zero.
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Lemma
(a) For K ∈ Kn, TK is a cycle.
(b) The map K 7→ TK is a valuation on Kn.
(c) If Ki ,K ∈ Kn, i ∈ N, and Ki → K in the Hausdorff metric, as

i →∞, then TKi (ϕ)→ TK (ϕ) for all differential forms ϕ of
degree n − 1 on R2n.

Theorem The map Kn × B(Σn)→ Tr+s+2 defined by
(K , η) 7→ TK

(
1ηϕ

r ,s
k

)
, satisfies the properties (a) – (d).

Hence
φr ,s,1

k (K , η) := TK
(
1ηϕ

r ,s
k

)
defines a weakly continuous extension of the functional first
introduced for polytopes.
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Remarks

I

φ0,s,1
k (P,Σn) = QΦ0,s

k (P)− 2π(s + 2) Φ0,s+2
k (P).

I More involved relations are available for φr ,s,1
k .

I We have

φr ,s,1
k (K , η) = Cr ,s

n,k

∫
η∩Nor K

x r us
n−1∑
i=1

bi(x ,u)2
∑

|I|=n−1−k
i /∈I

∏
j∈I kj(x ,u)

K(x ,u)
Hn−1(d(x ,u)).

This simplifies for k = 1,n − 2. If n = 3, for instance,

φr ,s,1
1 (K , η) = Cr ,s

3,1

∫
η∩Nor K

x r us k1(x ,u)b2(x ,u)2 + k2(x ,u)b1(x ,u)2

K(x ,u)
H2(d(x ,u)).

If K is smooth, this simplifies further.
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The general classification result

Theorem For p ∈ N0, let Tp(Kn) denote the real vector space of
all mappings Γ : Kn ×B(Σn)→ Tp with the following properties.
(a) Γ(K , ·) is a Tp-valued measure, for each K ∈ Kn;
(b) Γ is isometry covariant;
(c) Γ is locally defined;
(d) is weakly continuous.

Then a basis of Tp(Kn) is given by the mappings Qmφr ,s,j
k ,

where m, r , s ∈ N0 and j ∈ {0,1} satisfy 2m + 2j + r + s = p
and where k ∈ {0, . . . ,n − 1}, but j = 0 if k ∈ {0,n − 1}.
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The general classification result

The preceding theorem is essentially equivalent to (follows
from) the next theorem.

Theorem Let p ∈ N0. Let Γ : Kn × B(Σn)→ Tp be a mapping
with the following properties.
(a) Γ(K , ·) is a Tp-valued measure, for each K ∈ Kn;
(b) Γ is translation invariant and rotation covariant;
(c) Γ is locally defined;
(d) is weakly continuous.

Then Γ is a linear combination, with constant coefficients, of the
mappings Qmφ0,s,j

k , where m, s ∈ N0 and j ∈ {0,1} satisfy
2m + 2j + s = p and where k ∈ {0, . . . ,n − 1}, but j = 0 if
k ∈ {0,n − 1}.
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Ideas of Proof

I Reduction to fixed degreee of homogeneity
k ∈ {1, . . . ,n − 2} and n ≥ 3.

I On polytopes P the mapping Γ is of the form

Γ(P, ·) =
∑

m,j,s≥0
2m+2j+s=p

cmjsQmφ0,s,j
k (P, ·)

with constants cmjs. Γ and the mappings φ0,s,0
k and φ0,s,1

k
are weakly continuous. The mapping Γ′ defined by

Γ′ := Γ−
∑

m,j,s≥0, j≤1
2m+2j+s=p

cmjsQmφ0,s,j
k

satisfies (a) – (d), on polytopes P it is of the form

Γ′(P, ·) =
∑

m,s≥0, j≥2
2m+2j+s=p

cmjsQmφ0,s,j
k (P, ·).

Show that the constants cmjs with j ≥ 2 are zero.
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How to show that cmjs = 0 for j ≥ 2.

I Let Kh be a cap of height h cut off from a paraboloid of
revolution with axis Ren.

I Clearly, Kh has plenty of rotational symmetries.
I Approximate Kh by a sequence of inscribed polytopes with

limited symmetries:
I choose a cubical grid of width 2t , t > 0, in Rn−1 and lift its

vertices to the paraboloid;
I let Pt,h be the convex hull of these lifted points;
I note that Pt,h → Kh as t → 0+.

I The faces of Pt can be described explicitly.
The symmetries of Pt can be controlled.

I We show that the covariance properties of Γ′(Pt ,h, ·) are
restricted so strongly that this can be extended to the
limiting case. This finally leads to a contradiction with the
covariance properties of Γ′(Kh, ·) if Γ′ 6≡ 0.
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The remaining part of the proof requires a combination of
(elementary) algebraic and geometric considerations as well as
approximation arguments. We write again Γ instead of Γ′ and

Γ(K , f ) :=

∫
Σn

f (u) Γ(K , d(x ,u))

for K ∈ Kn and a continuous real function f on Sn−1. For a
polytope P ∈ Pn, we define

Wk (P, f ) :=
∑

F∈Fk (P)

Hk (F )

∫
ν(P,F )

f dHn−k−1.
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Lemma Let s0 be the smallest number s for which cmjs 6= 0 for
some m, j , set q := (p − s0)/2 and cj := ((2q)!s0!/p!)c(q−j)js0C0,s0

n,k .
Let d be the largest j ∈ {2, . . . ,q} for which cj 6= 0. Let
ω ∈ B(Sn−1) and 0 < ε < 1 be such that ω is ε-close to −en. Let
f be a nonnegative, continuous real function on Sn−1 with
support in ω. For P ∈ Pn, define

∆(P, f ) :=
d∑

j=2

cjQq−j
∑

F∈Fk (P)

Qj
L(F )H

k (F )

∫
ν(P,F )

f dHn−k−1 ∈ T2q.

Let E ′ := (a, . . . ,a︸ ︷︷ ︸
2q

) with a ∈ Rn−1, ‖a‖ = 1 and

E := (b1, . . . ,bp) := (a, . . . ,a︸ ︷︷ ︸
2q

,−en, . . . ,−en︸ ︷︷ ︸
s0

).

Then ∣∣Γ(P, f )(E)−∆(P, f )(E ′)
∣∣ ≤ C3Wk (P, f )ε

with a constant C3 depending only on Γ.
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We apply this approximation to the polytopes Pt ,h to get

Γ(Ph,t , f )(E)

=
d∑

j=2

cj

b(n,k)∑
i=1

∑
F∈F i

k,h(Ph,t )

(Qq−jQj
Li

)(E ′)Hk (F )

∫
ν(Ph,t ,F )

f dHn−k−1 + R5(E)

= b(n, k)−1Wk (Ph,t , f )

 d∑
j=2

cjQq−j
b(n,k)∑

i=1

Qj
Li

 (E ′) + R5(E)

with
|R5(E)| ≤ C5Wk (Ph,t , f )ε,

where C5 depends only on Γ.

This approximation is crucial for the next lemma.
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Lemma Let n ≥ 4. Under the assumptions made above, there
exist a convex body K ∈ Kn, a continuous function f on Sn−1, a
p-tuple E, and a rotation ϑ ∈ O(n) such that K and f are
invariant under ϑ, but Γ(K , f )(ϑE) 6= Γ(K , f )(E).

The proof of this lemma involves the study of the polynomials

d∑
j=2

cj(x2
1 + · · ·+ x2

n )q−j
∑

I⊂{1,...,n},|I|=k

(∑
i∈I

x2
i

)j

.

It is tempting to believe that c2 = . . . = cd = 0 if this polynomial
is rotation invariant. However, this is not true (not even for
n = 2) and this is precisely the reason why several cases have
to be distinguished and additional geometric arguments are
required.
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If this is proved, then the invariance of K and f under ϑ and the
rotation covariance of Γ give

Γ(K , f )(ϑE) = Γ(ϑK , ϑf )(ϑE) = Γ(K , f )(E).

This is a contradiction, which finishes the proof of Theorem 5.1
for n ≥ 4.

For n = 3 an thus k = 1 (and d odd) we work with a more
flexible (depending on d) triangular complex in R2 and with
Minkowski averages of the polytopes obtained by lifting the
vertices of this complex.
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