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Getting started

We consider maps
[PIXB(R 'Sy TP or  T:K"'xBR"xS"™ 1) - TP

which are
(a) measure valued: I'(K, ) is a tensor measure.

(b) isometry covariant:
o [(K+t,n+t)is atensor polynomial in t € R”,
o [(VK,Un) =II(K,n) for ¥ € O(n).
(c) locally defined: (K, n) = I'(K’,n) whenever
n € B(R" x S™1) and N Nor K = N Nor K'.
(d) weakly continuous: if lim;_, ., K; = K then

_Iim/ fdr(K,-,.):/ FAr(K, )
1—00 JRNxSn—1 RNAxSN—1

for all continuous functions f : R” x S"~! — R.
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Examples

1. For K € K"and n € B(R" x S"1)
O (Km) i= el [ XU K. dx. )
n

forr,s,k e Ngwith k <n-—1.

Here A«(K, ) is the k-th support measure and x"u® is a
symmetric tensor product.
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Examples

1. For K € K"and n € B(R" x S"1)
O (Km) i= el [ XU K. dx. )
n

forr,s,k e Ngwith k <n-—1.

Here A«(K, ) is the k-th support measure and x"u® is a
symmetric tensor product.

2. ForPeP"

ol :=Chy > Qg / / 1,(x, u)x"us 1K1 (du) HK (dx)
FeFk(P) FJu(PF)

for r,s,j,k € Nowith 1 < k <n—1; ¢5%% .= ¢5°.



A local characterization theorem: polytopes

For p € Ny, let Tp(P") denote the real vector space of all
mappings I : P" x B(R" x §"~1) — TP with the following
properties:

(a) F'(P,-) is a TP-valued measure, for each P € P";

(b) I is isometry covariant;

(c) I'is locally defined.
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where m,r, s, j € Ng satisfy2m + 2j + r + s = p and where
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A local characterization theorem: polytopes

For p € Ny, let Téo)(P”) denote the real vector space of all
mappings I : P" x B(R" x §"~1) — TP with the following
properties:

(a) (P, -) is a TP-valued measure, for each P € P";

(b) I is translation invariant and rotation covariant;

(c) I'is locally defined.

Theorem 1 A basis of TF(,O)(P”) is given by the mappings
0.5,
Qm¢k Sj’

where m, s, j € Ny satisfy 2m + 2j + s = p and where
ke{0,...,n—1},butj=0ifk € {O,n—1}.



General convex bodies

Why did we not define ¢;/(K-) for K € K" and j > 1?



General convex bodies

Why did we not define ¢;/(K-) for K € K" and j > 1?
At least for k = n— 1 we can replace Q[(F) in

Cont D (P) %ury /F /V(P F) 1, (X, u)x"u* HO(du) 1" (dx)

FeFn_1

by ‘
i i ] . [ . . .
Q[(F) — (Q— U2>/ _ Z(_1)/<II> O/—li2l

so that

o d i Y _ .
¢;7f,{ _ Z(_.‘ )/ (/) (s +20)\wiisi2i Qlfld)'ri—:—z.

I slw
i—0 1+s



Splitting wrt degree of homogeneity

M K" x B(R" x S"~1) — TP is homogeneous of degree k if
FAK, Ap) = XT(K,n),  KeK"neB(X"),>0,

where A\ .= {(Ax,u) : (x,u) € n}.



Splitting wrt degree of homogeneity

M K" x B(R" x S"~1) — TP is homogeneous of degree k if
FAK, Ap) = XT(K,n),  KeK"neB(X"),>0,
where \n = {(Ax, u) : (x,u) € n}.

Lemma Letp € Ny. LetT : K" x B(X") — TP be such that
(a) T(K,-) is a TP-valued measure, for each K € K";

(b) T is translation invariant and rotation covariant;

(c) T is locally defined;

(d) T is weakly continuous.

ThenT = S"7—1 T, where each T has properties (a) — (d) and
is homogeneous of degree k.



Proof. The restriction I'|/P" x B(X") has all the properties
required to apply the characterization result for polytopes.
Hence it is a linear combination of Q’"qﬁ S/ g0 that

[P" x B(X") = Zrk

with g : P" x B(X") — TP. This shows that

F(AP,\n) = Z)\ Ce(P,7n), PeP"neB(X"),\>0.

This relation can be inverted coordinate-wise, i.e.

n
n) =Y bel(rP,rm), k=0,...,n—1,

r=1

and used to define ', for general convex bodies.
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Weakly continuous extension for j = 1

The normal bundle of K € K" is the (n — 1)-rectifiable set
Nor K := {(x,u) € 9K x S"™1: (x,u) = h(K, u)}.
For %"~ almost all (x, u) € Nor K, the tangent space

Tan"~'(K, (x, u)) is an (n — 1)-dimensional linear subspace
spanned by a;(x, u),...,an_1(x, u), where

1  k(xu)
X, U) = | ————bj(x, ;
<\/1 + ki(x, u)? \/1 + ki(x, u)? )

by(x,u),...,by_1(x, u) is a suitably oriented ONB of u+, and
ki(X7 U) € [07 OO]
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We define an (n — 1)-vector
ak(x,u) = ay(x,u) A... A an_1(x, u),

which orients Tan"~"(K, (x, u)) and then an (n — 1)-dimensional
current in R?" by

Tk = (’H”‘1 L NorK) A ag,

the normal cycle of K. More explicitly,
Tel) = [ (@l u. o) 10 (b)),
Nor K

for all "' L Nor K-integrable functions ¢ : R27 — A"~ R2",
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Lipschitz—Killing forms

Differential forms ¢4 : R2" — A" ' R?", k € {0,...,n— 1}, of
degree n— 1 on R?" are defined by

@k(x? u)(£17' . 75"71) =

k n—1
1
KI(n—1 — K)lwn_x Z sgn(o) </\ My A /\ M2&o@iy A U, Qn> ,

oeS(n—1) i=1 i=k+1

where &;,..., 6,1 € R?" =R" x R".
A straightforward calculation shows that

(ak(x, u), pk(x, u)) =

Z [Tics ki(x, u)

-
Wik gk LIims V1 + ki(x, u)?

for "1 almost all (x, u) € Nor K, hence
Tk (1npk) = Me(K 7).
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Current representation of ¢

Letn>3,kec{1,....,n—2}andr,s € Np. Let (x,u) € R?" and

V=(Vi,...,Vrpsr2) € (R")FST2 For &, ..., 61 € R?", define
~I,S - C;i r S
@k (X,U,V,E*],.. é-n 1) (k )( 1_k)!X(V1,...7Vr)U (Vf'+17"~7vf+5)

n—1
X Z sgn() (Vrss+1, Mi&aqry) <Vr+s+2 A /\ M&o(iy A /\ Mo&o(iy A U, Qn>

oceS(n—1) i=2 i=k+1
For fixed x, u, v, the map
Fi(x, vy s (R 5 R

is multilinear and alternating, hence an element of A"~ ' R2".
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Current representation of ¢, al

Symmetrization gives
A O ST Y ST Y

1 -
m Z G (X U Ve(tys -5 Ve(rps2)i €15+ €nt)-
reS(r+s+2)

Then
(102’3()(7 U) : (517"'75”*1) = SOZ’S(X’ u ';51%"75”71)

is an (n — 1)-covector of T' 512, j.e. € A" '(R2" T/ +5+2),
The map

rs RZH N /\ RZn TI’+S+2) (X, U) N SO;’S(X, U),

is a differential form of degree n — 1 on R?” with coefficients in

TI+42, je. € £ 1(R2M, T/ 542) i= £(R2, \"~" (R2", T'+5+42)),
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Properties

For (x,u) € R?", ac A\, ;R2", 9 € O(n):

> (a0 °(x,u)) € TIHst2,
> (Va, ¢ (0x,9u)) = 9(a, v °(x, u)).
where 9¥¢ := (9p,9q) for € = (p,q) € R" x R" = R?",

The following lemma justifies these definitions.
Lemma. If P € P" andn € B(X"), then

To (1,0) = 61" (P,).
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Proof For P € P" and € B(X"), we show that

Tr (1,7:°(3v:) = Cop D Que(Virstts Virsta)
FEF(P)

<[ XVt VU Vet Vi) HO (A, 1),
nN(Fxv(P,F))
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Proof For P € P" and € B(X"), we show that

Tr (1,7:°(3v:) = Cop D Que(Virstts Virsta)
FeFk(P)

<[ X (Vi VU Vet Vo) HO (A, 1),
nN(Fxv(P,F))

For this, we start from the disjoint decomposition
n—1
n N Nor P = U U n N (relint F x v(P, F))
j=0 FeF;(P)

and use information about k;(x, u) € {0, oo} available for
polytopes, when (x, u) € F x v(P, F) for a j-face F of P: exactly
j of the ki(x, u) are zero.
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Lemma
(a) ForK € K", Tk is a cycle.
(b) The map K — T is a valuation on K".

(¢) IfK;,, K e K", i e N, and K; — K in the Hausdorff metric, as
i — oo, then Ty (¢) — Tk(yp) for all differential forms ¢ of
degree n — 1 on R?".
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Lemma

(a) ForK € K", Tk is a cycle.

(b) The map K — T is a valuation on K".

() IfKi, K e K", i e N, and K; — K in the Hausdorff metric, as

i — oo, then Ty (¢) — Tk(yp) for all differential forms ¢ of
degree n — 1 on R?".

Theorem The map K" x B(X") — T"+5+2 defined by
(K.n) — Tk (1,)°), satisfies the properties (a) - (d).
Hence 1

o> (Kon) = Tk (159°)

defines a weakly continuous extension of the functional first
introduced for polytopes.
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Remarks

o™ (P.E") = QOR°(P) — 2n(s +2) ° %(P).

> More involved relations are available for ¢}*".
» We have
n—1
H'E/k/(x7 U) 1
SN (K, ) = C”S/ XU bi(x, u)? e L yn=1(d(x, u)).
e () MK JnriNor k ; 1 4) Z K(x, u) (d(x, )

[l=n—1—k
ig!

This simplifies for k = 1,n — 2. If n = 3, for instance,

k (X7 U)b (Xa U)2+k2(X, U)b1(X, U)2
r,s,1 r,s r,s ™ 2 2
(K, n) = Cy / x'u H
o (Ko) 31 nNNor K K(x, u)

(d(x, u)).

If K is smooth, this simplifies further.
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The general classification result

Theorem For p € Ny, let Tp(K") denote the real vector space of
all mappings T : K" x B(X") — TP with the following properties.

(a) T(K,-) is a TP-valued measure, for each K € K";

(b) T is isometry covariant;

(c) T is locally defined;

(d) is weakly continuous.

Then a basis of Ty(K") is given by the mappings Q™)
where m,r,s € Ng andj € {0,1} satisfy2m+2j+r+s=p
andwhere k € {0,...,n—1},butj=0ifk € {O,n—1}.
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The general classification result

The preceding theorem is essentially equivalent to (follows
from) the next theorem.

Theorem Letp € Ny. LetT : K" x B(X") — TP be a mapping
with the following properties.

(a) T(K,-) is a TP-valued measure, for each K € K";
(b) T is translation invariant and rotation covariant;
(c) T is locally defined;

(d) is weakly continuous.

ThenT is a linear combination, with constant coefficients, of the
mappings Q™¢>*!, where m, s € Ny andj € {0,1} satisfy
2m+2j+s=pandwherek € {0,...,n—1}, butj =0 if
ke{0,n—1}.
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Ideas of Proof

» Reduction to fixed degreee of homogeneity
ke{1,...,n—2}and n > 3.
» On polytopes P the mapping I is of the form
r(Pv') = Z ijsom¢0 Si/( ) )

m,j,s>0
2m+-2j+s=p

with constants c,s. I and the mappings ¢2*° and ¢%°"
are weakly continuous. The mapping I’ defined by

/. m 0737j
m,j,5>0, j<1
2m+-2j+s=p

satisfies (a) — (d), on polytopes P it is of the form
r,(P7 ) = Z ijst¢27s,j(P> )
m,s>0,j>2

2m+2j+s=p

Show that the constants ¢, with j > 2 are zero.
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How to show that ¢y = 0 for j > 2.

» Let K}, be a cap of height h cut off from a paraboloid of
revolution with axis Rey.
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» let P; , be the convex hull of these lifted points;
» note that P; , — Khas t — 0+.
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» let P; , be the convex hull of these lifted points;
» note that P; , — Khas t — 0+.
» The faces of P; can be described explicitly.
The symmetries of P; can be controlled.

21/27



How to show that ¢,s = 0 for j > 2.

» Let Kj, be a cap of height h cut off from a paraboloid of
revolution with axis Re,.

» Clearly, K, has plenty of rotational symmetries.

» Approximate K}, by a sequence of inscribed polytopes with
limited symmetries:

» choose a cubical grid of width 2t, t > 0, in R~ and lift its
vertices to the paraboloid;
» let P; , be the convex hull of these lifted points;
» note that P; , — Khas t — 0+.
» The faces of P; can be described explicitly.
The symmetries of P; can be controlled.

» We show that the covariance properties of I'(P; p,, -) are
restricted so strongly that this can be extended to the
limiting case. This finally leads to a contradiction with the
covariance properties of ['(Kj, ) if [ £ 0.
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The remaining part of the proof requires a combination of
(elementary) algebraic and geometric considerations as well as
approximation arguments. We write again I instead of I’ and

MNK,f):= f(u)r(K,d(x,u))

yn

for K € K" and a continuous real function f on S"~'. For a
polytope P € P", we define

Z HK(F / faH k-1,
(P,F)

FeFk(P
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Lemma Let sy be the smallest number s for which cps # 0 for
some m, j, set q := (p — p)/2 and ¢; := ((29)!s0!/P!)C(q-jyiss Coic-
Let d be the largest j € {2,...,q} for which ¢; # 0. Let

w € B(S" ") and 0 < ¢ < 1 be such that w is e-close to —ey. Let
f be a nonnegative, continuous real function on S"~' with
support inw. For P € P", define

ZC,QQI Yo alHF /(PF)de”_k_1e']1‘2q.

FEFi(P)
LetE':=(a,...,a) withac R |a| =1 and
——
2q
E:=(by,...,bp):=(a,...,a —€n,...,—€n).

2q So

Then
|F(P, (E) — A(P, f)(E’)\ < C3Wi (P, fe

with a constant C3 depending only onT.
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We apply this approximation to the polytopes P; , to get

(P, F)(E)

o

(n.k)

d
-3¢ (@ IQ)EWHF) [ fanm k4 As(E)
=2 =1 FeF] (Pny) v(Pht,F)
d 'b(n,k) ,
= b(n, k)" Wi(Pnt. 1) [ Y Q77 > Q) | (E")+ Rs(E)
j=2 i=1

with
|Rs(E)| < CsWi(Phyt, f)e,

where Cs depends only on T.

This approximation is crucial for the next lemma.
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Lemma Let n > 4. Under the assumptions made above, there
exist a convex body K € K", a continuous function f on S"~1, a
p-tuple E, and a rotation ¥ € O(n) such that K and f are
invariant under 9, but T (K, f)(VE) # (K, f)(E).

The proof of this lemma involves the study of the polynomials

d i
dog(xE+- x> <Z xf) .

j=2 Ic{1,...n}|ll=k \iel

It is tempting to believe that ¢, = ... = ¢4 = 0 if this polynomial
is rotation invariant. However, this is not true (not even for

n = 2) and this is precisely the reason why several cases have
to be distinguished and additional geometric arguments are
required.
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If this is proved, then the invariance of K and f under ¥ and the
rotation covariance of I' give

[(K, f)(JE) = [(IK, 9F)(IE) = [ (K, f)(E).

This is a contradiction, which finishes the proof of Theorem 5.1
for n > 4.

For n= 3 an thus kK = 1 (and d odd) we work with a more
flexible (depending on d) triangular complex in R? and with
Minkowski averages of the polytopes obtained by lifting the
vertices of this complex.
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