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1. Classical kinematic formulas

The classical kinematic integral formulas in Integral Geometry

are the Principal Kinematic Formula (PKF) and the Crofton

Formula (CF) for intrinsic volumes Vj of convex bodies (or

polyconvex sets) K,M ⊂ Rd:∫
Gd
Vj(K ∩ gM)µ(dg) =

d∑
k=j

c̃(d, j, k)Vk(K)Vd+j−k(M),

j = 0, . . . , d, and

∫
A(d,q)

Vj(K ∩ E)µq(dE) = c̃(d, j, q)Vd+j−q(K).

j = 0, . . . , q.

1



In their local variant for curvature measures, we have

∫
Gd
Cj(K∩gM,A∩gB)µ(dg) =

d∑
k=j

c̃(d, j, k)Ck(K,A)Cd+j−k(M,B),

j = 0, . . . , d, and∫
A(d,q)

Cj(K ∩ E,A ∩ E)µq(dE) = c̃(d, j, q)Cd+j−q(K,A),

j = 0, . . . , q, for convex bodies K,M and Borel sets A,B ⊂ Rd.

How about kinematic formulas for the other local analogs of the

intrinsic volumes, the area measures?
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2. Area measures

A short reminder to the definition of area measures:

Let K ⊂ Rd be a convex body (a non-empty compact convex

set).

The surface area measure Sd−1(K, ·) of K is a measure on the

unit sphere Sd−1. For a Borel set A ⊂ Sd−1, Sd−1(K,A) measures

the area (Hausdorff measure) of the set of boundary points of

K, which have an outer unit normal in A.
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By the local Steiner formula,

Sd−1(K + rBd, ·) =
d−1∑
j=0

rd−1−j
(d− 1− j

j

)
Sj(K, ·)

the lower order area measures S0(K, ·)(= spherical Lebesgue

measure σ) and S1(K, ·), ..., Sd−2(K, ·) are introduced.
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It is easy to see that kinematic formulas for area measures cannot

hold in exactly the same form, hence they have to be modified

appropriately.

E.g., a CF of the form∫
A(d,q)

Sj(K ∩ E,A ∩ L(E))µq(dE) = c̃(d, j, q)Sd+j−q(K,A),

is wrong if K is a polytope and A is the support of Sd+j−q(K, ·), since the
integrand then vanishes for almost all E.

The same is true, if Sj(K∩E, ·) is replaced by the intrinsic version S′j(K∩E, ·).

Hence, we consider∫
A(d,q)

Sj(K ∩ E, ·)µq(dE),

for 1 ≤ j < q ≤ d− 1, and ask whether it can be expressed by an

area measure of K?
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Two related results are due to Glasauer (1997), who showed

that∫
Gd

Θj(K∩gM,A∧gB))µ(dg) =
d∑

k=j

c̃(d, j, k)Θk(K,A)Θd+j−k(M,B),

for j = 0, . . . , d, and∫
A(d,q)

Θj(K ∩ E,A ∧ E)µq(dE) = c̃(d, j, q)Θd+j−q(K,A),

for j = 1, . . . , q − 1. Here Θi(K, ·) is the i-th support measure

of K, A,B are Borel sets in the normal bundle of K,M and ∧ is

a suitable law of composition.

Although the area measures are projections of the support mea-

sures, these results do not imply explicit formulas of kinematic

type for the area measures (due to the definition of ∧).

6



3. Fourier operators

In Goodey-Yaskin-Yaskina (2009), the authors studied oper-

ators Ip, for 0 < p < d, defined on functions f ∈ C∞(Sd−1) as

follows:

Let fp be the homogeneous (of degree −d+ p) extension of f to

Rd \ {o} and let f̂p be its distributional Fourier transform. The

restriction of f̂p to Sd−1 is again a smooth (complex) function

and we consider the operator

Ip : f 7→ f̂p|Sd−1.
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Since Ip intertwines the group action of SO(d), it acts as a mul-

tiple of the identity on the spaces Hd
n of spherical harmonics (of

degree n = 0,1, . . . ). The multipliers are given by

λn(d, p) = πd/22p(−1)n/2 Γ(n+p
2 )

Γ(n+d−p
2 )

. (1)

For even n they are real, for odd n they are purely imaginary.

Due to (1), the operator Ip can be defined (by analytic continuation) for

various other (complex) values of p, in particular for p = −1, but then only

on functions without linear spherical harmonic (centred functions).
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For the composition IqIp, all multipliers are real and non-zero (if

q = −1 only for n 6= 1). Thus we have a bijection

IqIp : C∞(Sd−1)→ C∞(Sd−1)

(for p, q 6= −1), respectively

I−1Ip : C∞0 (Sd−1)→ C∞0 (Sd−1)

(where C∞0 (Sd−1) is the space of centred functions in C∞(Sd−1)).
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Also, for 1 ≤ p ≤ d, we have

Id−pIp = (2π)dI∗,

where (I∗f)(u) = f(−u).

Since Ip is self-adjoint, it extends to mapping on distributions.

Here,

�I−1 = −
1

d− 1
I1,

where � is the differential operator which satisfies the distribu-

tional equation �h(K, ·) = S1(K, ·) for all convex bodies K.
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4. Mean section bodies

For 1 ≤ k ≤ d − 1, the k-th mean section body Mk(K) of a
convex body K in Rd was introduced in Goodey-W. (1992) as
the Minkowski sum of all sections of K by k-dimensional (affine)
flats. In terms of support functions,

h(Mk(K), ·) =
∫
A(d,k)

h(K ∩ E, ·)µk(dE),

where A(d, k) is the affine Grassmannian and µk is the motion
invariant measure on A(d, k).

For simplicity, we assume dimK = d and k ≥ 2 (M1(K) is always a ball).

Also, we may center the support functions, h∗, by requiring that the bodies

have their Steiner point at the origin.
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For k = 2, we showed

h∗(M2(K), u) = cd

∫
Sd−1

α(x, u) sinα(x, u)Sd−1(−K, dx),

where α(x, u) is the (smaller) angle between x and u. This is

generalized by the following result from Goodey-W. (2014):

Theorem. For k = 2, . . . , d, we have

h∗(Mk(K), ·) = cd,kI−1Ik−1Sd+1−k(−K, ·).

Corollary 1. Mk(K) determines K uniquely.

Corollary 2. We have

Sd+1−k(K, ·) = c̄d,kId−1Id+1−kS1(−Mk(K), ·).
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The proof of the theorem is quite involved and works by induc-

tion using the Ip-operators in lower dimensional spaces together

with results on spherical projections and liftings from Goodey-

Kiderlen-W. (2011). Also, it is based on an exchange formula

for mean section bodies which follows from a result of Alesker-

Bernig-Schuster (2011).
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5. Kinematic formulas for area measures

Concerning a Crofton-type result, we show:

Theorem. For convex bodies K and Borel sets A ⊂ Sd−1, we

have ∫
A(d,q)

Sj(K ∩ E, ·)µq(dE) = ad,j,qIjIq−jSd+j−q(−K, ·),

for 1 ≤ j < q ≤ d− 1 with explicitly given constants.
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Outline of the proof:

From the second corollary (applied to K∩E) and using the linear-
ity of the first area measure, we get (with a changing constant
c) ∫

A(d,q)
Sj(−(K ∩ E), ·)µq(dE)

= c
∫
A(d,q)

Id−1IjS1(Md+1−j(K ∩ E), ·)µq(dE)

= cId−1Ij

∫
A(d,q)

∫
A(d,d+1−j)

S1(K ∩ E ∩ F ), ·)

× µd+1−j(dF )µq(dE)

= cId−1Ij

∫
A(d,q+1−j)

S1(K ∩H, ·)ψ(dH),

where ψ is the image measure (on A(d, q+ 1− j)) of µd+1−j⊗µq
under the (almost everywhere defined) mapping (E,F ) 7→ E ∩F .
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We have g(E ∩ F ) = gE ∩ gF and so ψ is motion invariant and

hence a multiple of µq+1−j. Therefore,∫
A(d,q)

Sj(−(K ∩ E), ·)µq(dE)

= cId−1Ij

∫
A(d,q+1−j)

S1(K ∩H, ·)µq+1−j(dH)

= cId−1IjS1(Mq+1−j(K), ·)
= cIjIq−jSd+j−q(K, du),

where we have used the linearity of the first area measure and

the second corollary again (as well as the inversion formula for

Ip).
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In order to obtain a corresponding kinematic formula, we use a

local version of Hadwiger’s general integral geometric theorem:

Theorem. Let ϕ : K′ →M+(Sd−1) be a continuous and additive

mapping. Then, for K,M ∈ K′ and Borel sets A ⊂ Sd−1,∫
Gd
ϕ(K ∩ gM,A)µ(dg) =

d∑
k=0

[Td,kϕ(K, ·)](A)Vk(M),

with mappings Td,k : M+(Sd−1) → M+(Sd−1) which are given

by the Crofton integrals

Td,kϕ(K, ·) =
∫
A(d,k)

ϕ(K ∩ E, ·)µk(dE), k = 0, . . . , d.
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From the CF, we thus get a PKF for area measures:

∫
Gd
Sj(K ∩ gM,A)µ(dg) =

d∑
k=j

ad,j,k[IjIk−jSd+j−k(−K, ·)](A)Vk(M),

for 1 ≤ j ≤ d− 1.
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