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Digital images

Suppose we study an object X C RY. (For instance via a microscope or
scanner.)

The only information we have about X is a (black-and-white) digital
image:
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The pixel midpoints form a lattice L. (L = Z9)
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Mathematically, the information in a black-and-white image is the set
XNL

of black pixel midpoints.



Digital stereology

From the information
XNL,

we want to derive information about the geometry of X.
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Digital stereology

From the information
XNL,

we want to derive information about the geometry of X.
In this talk: want to estimate the Minkowski tensors.

Change of resolution corresponds to scaling I by some a > 0. We then
have the information

X N al.

Want estimators to converge when a — 0.



Naive approach

Approximate X by the union of black pixels.

Good approximation of volume.

Boundary approximation is generally poor.
The boundary length is approximately v/2 times too large.



Conditions on the object

We assume that our object X C RY
m is compact.
m is topologically regular, i.e. X = W
m has positive reach, i.e. Reach(X) > 0.

Definition

Let Reach(X) be the largest number such that all x € RY with
d(X,x) < Reach(X) has a unique closest point in X.

Convex sets and C? manifolds have positive reach.



Minkowski volume tensors

For r,s > 0, define the r-tensor:
r,0 1 r
¢, (X) = = XX dx

In particular, CDS’O(X) is volume.
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Minkowski volume tensors

For r,s > 0, define the r-tensor:
r,0 1 r
¢, (X) = x"dx
X
In particular, CDS’O(X) is volume.

Can estimate this by a Riemann sum

1
d);’O(X) ~ achﬁ Z x"
" xeXNal

where ¢, is the volume of a lattice cell in L.



General Minkowski tensors

For r,s>0and k=0,...,d — 1, define
O (X) = o [ X0 CuX;d(x, )
>

where:

Y =R?x 5§91,
Ck(X;-) is the k'th generalized curvature measure on ¥,
x"u® means the symmetric tensor product.

Again, CD%O(X) is the kth the intrinsic volume.



The Steiner formula

Let 0 > R and define the parallel set
XR={xeR?|d(X,x) <R}
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The Steiner formula

Let 0 > R and define the parallel set
XR={xeR?|d(X,x) <R}
Define the Voronoi tensor

Vg*(X) = /xR px (x)"(x — px(x))°dx.

V%Q(X) is the (total) Voronoi covariance measure of Mérigot et al.
(2010).
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k=0

K is the volume of the unit ball in RX.



The Steiner formula

Let 0 > R and define the parallel set
XR={xeR?|d(X,x) <R}

Define the Voronoi tensor
VRO = [ px(0(x = px(0) e

V%Q(X) is the (total) Voronoi covariance measure of Mérigot et al.
(2010).

When R < Reach(X), the (generalized) Steiner formula yields

d
VRE(X) = Crs Y hiasRTTFOL® (X)), (1)
k=0
K is the volume of the unit ball in RX.
For r = s = 0, this is the usual Steiner formula.



Idea of estimation

Choose 0 < Ry < -+ < Ry < Reach(X).

Write the equations (1) in matrix form:

Vf':\”os(x) Ks RS s K/S+ng+d d);’S(X)
= Crs
vio) Ny o veare) \sgio
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Idea of estimation

Choose 0 < Ry < -+ < Ry < Reach(X).

Write the equations (1) in matrix form:

VI'%”QS(X) Ks RS s K/S+ng+d d);’S(X)
= Crs
vio) Ny o veare) \sgio

Can solve for the Minkowski tensors:

-1

L% (X) . KsRS ... KsraRSTA Vi (X)
. - ¢ . . .
O (X) * \ksRS ... KeraRSTE VRS (X)

Idea: approximate V,r?’is(X) by V;r-(.’is(X N alL).



The algorithm

By definition

VES(X N aL) = / pxoat () (v — Pxaa(y))*dy.
(XNaL)R
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The algorithm

By definition

VES(X N aL) = / pxoat () (v — Pxaa(y))*dy.
(XNaL)R

For intrinsic volumes:
VRO(X) = Vy(XR),
VX N all) = V(X N aL)R).



Voronoi expression

For each x € X N al, define the Voronoi cell of x by
Vi={yeR?|Vze XnaL:|y — x| <l|y—z|}.
Then (X N aL)R = U,cxnan Vx N B(x, R) and hence

Ve*(XNal) =

xeXNal

>

xeXnal

/ x"(y —x)*dy
ViNB(x,R)

z°dz.
Vi—x)NB(0,R)
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Convergence

Would like our estimators to converge to the true value when a — 0.

Recall that:
O7(X) (R keraRSTT\ T (VEI(X)
O (X) " \KsRS ... kergRIT VRS (X)

So it is enough that

. r,s _ r,s
lim VE*(X N al) = Vg*(X).
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Convergence - intrinsic volumes
For Xi, Xo C RY compact, define the Hausdorff distance

dH(Xl,Xg) = inf{€ >0 ’ X1 C Xzs,Xg - Xf}

Theorem (Chazal, Cohen-Steiner, Mérigot (2010))
Let X1, X> C RY compact. Let dy(X1, X2) < g. Then

[Va(XT®) = Va(X)| < C(d, X1, R)dp (X0, X2).
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Convergence - intrinsic volumes

For Xi, Xo C RY compact, define the Hausdorff distance

dH(Xl,Xz) = inf{a >0 ’ X1 C Xzs,Xg - Xf}

Theorem (Chazal, Cohen-Steiner, Mérigot (2010))
Let X1, X> C RY compact. Let dy(X1, X2) < g. Then

[Va(XT®) = Va(X)| < C(d, X1, R)dp (X0, X2).

Since X is topologically regular, lim,_,o dy(X, X NalL) = 0.

Corollary
. 0,0 _ 00
all_rQJVR (X Nal) = Vg (X).
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Convergence - general tensors

Theorem (Merigot et al. (2010), Hug, Kiderlen, S. (2014))

Let X1, X5 C R bpe compact. Assume

dr(X1, X2) < min{%, diam(X1), %} Then

VR*(X1) = VE*(X)| < C(d, r, s, X1, R)dn(X1, Xa)?.
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Convergence - general tensors

Theorem (Merigot et al. (2010), Hug, Kiderlen, S. (2014))

Let X1, X5 C R bpe compact. Assume

dr(X1, X2) < min{%, diam(X1), %} Then

I\Hl—‘

VR*(X1) — VR°(X2)| < C(d, r,s, X1, R)dn(X1, X2)2.

Corollary

. r,s _ r,s
li“oVR (X NnalL) =Vg>(X).

If X is convex or a C?> manifold, then the convergence speed is O(+/a).
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A few words about the proof

It is enough to show that for a basis ey, ..., eq € RY, the evaluations
satisfy

|V/;’S(X1)(ei17 cee ei,+5) - V,;’S(Xz)(e,'l, R e,'r+s)|
< €(d, r,s, X1, R)dp (X1, X2)2.
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A few words about the proof

It is enough to show that for a basis ey, ..., eq € RY, the evaluations
satisfy

|V;-<.’S(X1)(e,'1, cee ei,+5) - V,;’S(Xz)(e,'l, R e,'r+s)|
< €(d, r,s, X1, R)dp (X1, X2)2.

The left hand side can be written as

[ Foxox = px ()~ [ Flpxalo)ox = paa ).
X

1 X2

where f : RY x RY — R is some locally Lipshitz function.

The key ingredient is now a theorem by Chazal, Cohen-Steiner, and
Mérigot:

NI

/E]pxl(x) = pr()|dx < C(d, X1, E)du(X, Xo) 3.
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Local tensors

We can consider the tensor valued measure, given on a Borel set A C R

by
dDL’S(X; A) = c,757k/
Ax Sd—1

Define the Voronoi tensor measure

VEOGA) = [ 1a(ox (Do) (x = px(x)) .

x"u® Cp(X; d(x, u)).
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Local tensors

We can consider the tensor valued measure, given on a Borel set A C R

by
dDL’S(X; A) = Cr,s,k/
Ax Sd—1

Define the Voronoi tensor measure

VEOGA) = [ 1a(ox (Do) (x = px(x)) .

x"u® Cp(X; d(x, u)).

Theorem

Let X;, X C RY be compact sets. If lim;_,o, dy(Xi, X), then
lim VE°(Xi; A) = Vp*(X; A)

1—00

for every Borel set A that satisfies H?(py*(0A) N XR) = 0.
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Local tensors

We can consider the tensor valued measure, given on a Borel set A C R

by
dDL’S(X; A) = Cr,s,k/
Ax Sd—1

Define the Voronoi tensor measure

VEOGA) = [ 1a(ox (Do) (x = px(x)) .

x"u® Cp(X; d(x, u)).

Theorem

Let X;, X C RY be compact sets. If lim;_,o, dy(Xi, X), then

lim VES(Xi; A) = VES(X; A)

1—00

for every Borel set A that satisfies H?(py*(0A) N XR) = 0.

Local tensors with A C Y7



Discussion

Conclusions:
m Get algorithm for estimation of all Minkowski tensors.
m Proof of convergence when resolution goes to infinity.
m Simple expression in terms of Voronoi cells.
m Slower than local algorithms.

m Applies to other approximations of X than digital images.
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Discussion

Conclusions:
m Get algorithm for estimation of all Minkowski tensors.
m Proof of convergence when resolution goes to infinity.
m Simple expression in terms of Voronoi cells.
m Slower than local algorithms.

m Applies to other approximations of X than digital images.

Future directions:
m Performance in practice?
m How to choose R;?
m Extension to polyconvex sets?
[

Extension to grey-valued images?
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