Statistical models and methods for spatial point
processes

Rasmus Waagepetersen
Department of Mathematics
Aalborg University
Denmark

May 30, 2013

1. Intro to point processes and moment measures
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Lectures:

. Intro to point processes and moment measures

. The Poisson process

. Cox and cluster processes

. Estimating equations

1
2
3
4. The conditional intensity and Markov point processes
5
6

. Likelihood-based inference and MCMC (if time allows)

Aim: overview of

> spatial point process theory

» statistics for spatial point processes with emphasis on

estimating equation inference

» not comprehensive: the most fundamental topics and my

favorite things.

» all methods in Section 1-5 implemented in R package

spatstat

Mucous membrane cells

Centres of cells in mucous membrane:

Repulsion due to physical
extent of cells

Inhomogeneity - lower
intensity in upper part

Bivariate - two types of
cells

Same type of
inhomogeneity for two
types ?
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Data example: Capparis Frondosa

» observation window W
= 1000 m x 500 m

> seed dispersal=- clustering

> environment =
inhomogeneity

-10

Elevation

Potassium content in soil.

Objective: quantify dependence on environmental variables and

clustering
5/99
Somalian pirates - two-type space-time
Somalisk soroveri
Kapring ® = Mislykket kapring
(INDTIL NU)
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Whale positions

/\/\\/\ s

0 10 20 30 40 50

Aim: estimate whale intensity A
Observation window W = narrow strips around transect lines
Varying detection probability: inhomogeneity (thinning)

Variation in prey intensity: clustering
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Cotton plantations in the Deep South

%If AMERIKANSKE TILSTANDE

Blog med Berlingske Tidendes USA-korrespondent Pou! Hai.
‘www.usablog.blogs.berlingske.dk
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ShvenogpohﬂklUSAldag

borgerkig |nﬂuelerstadlg 4 itik. De tidlige iSyden er mere d  Forsk ligaj tokort. De
det ovrige USA, og de ! ed preesi 12008 Her vand Barack Obama noget zer en bomuldsplantagerne befand sig i 1860, og deta
edssej € pa hans sydstaterne, som Barack Obama vandt i 2008, og
3 i lig d hvor de isintid I3, og dér hvor dende. P4 2008-kortet er de republikanske amter

de fleste sorte vaelgere i dag bor. demokratiske med biat.
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What is a spatial point process ?

Definitions:

1. a locally finite random subset X of R2 (#(X N A) finite for all
bounded subsets A C R?)

2. stochastic process of count variables {N(B)}gep, indexed by
bounded Borel sets By.

3. a random counting measure N on R?
Equivalent provided no multiple points: (N(A) = #(XNA))
This course: appeal to 1. and skip measure-theoretic details.
In practice distribution specified by an explicit construction (second

and third lecture) or in terms of a probability density (fourth
lecture).

Second-order moments

Second order factorial moment measure:

#
a@AxB)=E) 1uecAveBl ABCR?

u,veX

z//p(z)(u,v)dudv
AJB

where p(®)(u, v) is the second order product density

Infinitesimal interpretation of p(® (u € A ,v € B):

D (u, v)dAdB ~ P(X has a point in each of A and B)
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Moments of a spatial point process

Fundamental characteristics of point process: mean and covariance
of counts N(A) = #(X N A).

Intensity measure
u(A) =EN(A), ACR?

In practice often given in terms of intensity function

H(A) = /A p(u)du

Infinitesimal interpretation: N(A) binary variable (presence or
absence of point in A) when A very small. Hence

p(u)dA =~ EN(A) =~ P(X has a point in A)

Second moment vs. second factorial moment measure

Second moment measure

p®)(Ax B) =EN(A)N(B) = o®(Ax B)+E> 1[uc AN B]
ueX

Hence due to “diagonal terms” in sum not absolutely continuous.

10 /99

12

99



Campbell formulae

By definition of intensity function and product density and the
standard proof we obtain the useful Campbell formulae:

B h(u) = /h(u)p(u)du

ueX

E i h(u,v) = // h(u, v)p® (u, v)dudv

u,veX
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Covariance and pair correlation function

ColN() ME) = [ ptuau+ [ [ pniv )dudv

= Poisson variance + extra variance due

to interaction

15 /99

Pair correlation function

Pair correlation tendency to cluster/repel relative to case of
independent points:

(u,v) = P (u,v) _ P(X has a point in each of A and B)
gLV = p(u)p(v) — P(X has a point in A)P(X has a point in B)
= 1 if independence (Poisson process, next section)
14 /99
K-function

K(t) = /|h<tg(h)dh

(provided g(u,v) = g(u — v) i.e. X second-order reweighted

stationary)

Unbiased estimate of K-function (W observation window):

Examples of pair
correlation and
K-functions:

ot

Lo 1[O<Hu—vH§t]e
KO= 2

(eu,v edge correction factor)
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Exercises
1. Show that the covariance between counts N(A) and N(B) is
Cov[N(A), N(B] = u(AN B) + aD(A x B) — u(A)u(B)

2. Verify covariance formula on slide 16 (covariance in terms of
pair correlation function).

3. Show that in the isotropic case (g(u,v) = g(|ju — v|)).
K'(r) = 2mrg(r).

2. The Poisson process

4. Show that
+
1 1fu—v| <
Kt::/IUSt u)du = o(u)p(v)
(0= [ Ml < ds(wdu = g 32 =0
veX

(Hint: use the Campbell formula)
5. Show that the following estimate is unbiased:

. S -] <1
KO= 2 WA ]

where W,,_, translated version of W. 00 18 /99

The Poisson process
Assume 1 locally finite measure on R? with density p.

X is a Poisson process with intensity measure p if for any bounded . . 5 o .
region B with 1(B) > 0: Existence of Poisson process on R“: use definition on disjoint

partitioning R? = U2, B; of bounded sets B;.
1. N(B) ~ Poisson(u(B))

2. Given N(B), points in X N B i.i.d. with density « p(u), u € B Independent scattering:

» A, B C R? disjoint = X N A and XN B independent
B =10,1] x [0,0.7]: » p@(u,v) = p(u)p(v) and g(u,v) =1
fl ~ » Cov[N(A),N(B)] = [sp p(u)du

Homogeneous: p = 150/0.7 Inhomogeneous: p(x,y) oc e~10-6¥
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Characterization in terms of void probabilities Homogeneous Poisson process as limit of Bernouilli trials

The distribution of X is uniquely determined by the void
probabilities P(X N B = (}), for bounded subsets B C R2. iR
Consider disjoint subdivision iR
Intuition: consider very fine subdivision of observation window — W = UL, G where |G| = |W/|/n. With
then at most one point in each cell and (joint) probabilities of probability p|C;| a uniform point is i
absence/presence determined by void probabilities. placed in C;.
T
Hence, a point process X with intensity measure p is a Poisson il
process if and only if SESESS S
P(XN B = 0) = exp(—u(B)) Number of points in subset A is b(n|A|/|W], p|W|/n) which

converges to a Poisson distribution with mean p|A|.

for any bounded subset B.
Hence, Poisson process default model when points occur
independently of each other.

21/99 22/99

Distribution and moments of Poisson process Proof of independent scattering (finite case)
X a Poisson process on S with 1(S) = [5 p(u)du < oo and F set Consider bounded and disjoint A, B C R2.
of finite point configurations in S.
XN (AU B) Poisson process.

Examples of F: all point configurations with total number of Hence
points in a given interval, point configurations where all pairs of
points separated by distance ¢, ... P(XNAe F.XNBeG) (x={x1,...,%})
> o~ H(AUB) n
By definition of a Poisson process and law of total probability = —a /(AUB) IlxNnAeF,xNB e G] Hp(x,-)dx1 <. dx,
n=0 ' ! i=1
g X PRI G 1 b Fl
e e—,u(S) n = | T I/ X1,X2,...,Xmy €
:Z 1[{x1,x2, ..., %} € F]Hp(x,-)dxl...dx,, — 7 0 ml(n —m)! Jam
= s i=1 n
/ 1) € Gl [ plw)dsa . dx,
Similarly, i=1
(- ilS) n = (interchange order of summation and sum over m and k = n — m)
Eh(X) = ZO . /S h({x1,%2, .., %n}) HP(Xi)dxl . dx, P(XNA€ F)P(XNB € G)
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Superpositioning and thinning Density (likelihood) of a finite Poisson process
X1 and X, Poisson processes on S with intensity functions p; and

If X1,X>,... are independent Poisson processes (p;), then po where [< pa(u)du < 00 and po(u) = 0 = p1(u) = 0. Define
superposition X = U2, X; is a Poisson process with intensity 0/0 :=0.
function p = >"72; pi(u) (provided p integrable on bounded sets). Then

Conversely: Independent w-thinning of Poisson process X:
independent retain each point v in X with probability 7(u). P(X1 € F)
Thinned process Xihin and X\ Xehin are independent Poisson 2 el
processes with intensity functions m(u)p(u) and (1 — 7(u))p(uv). Z

] / 1x € F]Hp1 xij)dxy...dx, (x={x1,...,%})

n=0 i=1

Superpositioning and thinning results most easily verified usin —p2(S
\(/oid probability fharacterizatifn of Poisson proce);s, see M & V%/ *Z c / 1[x € Flei ($)=m(5) H G HPZ x;)dxy . .
2003) |
:]E(l[Xg € FIf(X2))
For general point process X: thinned process Xihin has product where
fiensity 7r(u)7r(\'/)p.(2)(u7 v) - hence g and K invariant under F(x) = oa(S)-1n(S) H p1(xi)
independent thinning. pz(X,)

Hence f is a density of X; with respect to distribution of Xs.

26/99

Back to the rain forest

» observation window W
= 1000 m x 500 m

In particular (if S bounded): X; has density > seed dispersal=- clustering

5 : > environment =
f(x) = eJsCmm()du Hm X;) inhomogeneity

10

0
6

with respect to unit rate Poisson process (p2 = 1).

4

2

-20 -10

Elevation Potassium content in soil.

Objective: quantify dependence on environmental variables and
clustering
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Inhomogeneous Poisson process Capparis Frondosa and Poisson process ?

Log linear intensity function Fit model with covariates elevation, potassium,...

p(u; B) = eXP(Z(“)ﬁT)a z(u) = (1, Zelev (1), Zpotassium (V) - - -) Estimated K-function and
Fitted intensity function K(t) = mt2-function for

Poi :
Estimate 8 from Poisson log likelihood (spatstat) P(U;B) - exp(BAz(u)T o1sson process

~—

Z z(u)BT—/W exp(z(u)BT)du (W = observation window)

ueXnW

0.012

§
g
£
g
g
g

0.008

Model check using edge-corrected estimate of K-function

0.004

#
Ujju — v < t]

K(t)= A -
u,vEXNW p(u; B)p(v; B)IW N W,y |

Not Poisson process - aggregation due to unobserved factors (e.g.

W,_, translated version of W. seed dispersal)

29/99 30/99

Exercises

1. What is K(t) for a Poisson process ?

2. Check that the Poisson expansion (1) indeed follows from the
definition of a Poisson process.

3. Compute the second order product density for a Poisson
process X.

) ) ] 3. Cox and cluster processes
(Hint: compute second order factorial measure using the

Poisson expansion for X N (AU B) for bounded A, B C R?.)

4. (if time) Assume that X has second order product density p(?)
and show that g (and hence K) is invariant under
independent thinning (note that a heuristic argument follows
easily from the infinitesimal interpretation of p(?)).

(Hint: introduce random field R = {R(u) : u € R?}, of
independent uniform random variables on [0, 1], and
independent of X, and compute second order factorial
measure for thinned process Xihin = {v € X|R(u) < p(u)}.)
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Cluster process: Inhomogeneous Thomas process

o %? . . .
o%%ﬁ&% % H .Paren’fs stationary Poisson point process
fgwf’e"g intensity x
I § f Poisson(a) number of offspring

Fo e distributed around parents according to
2 0 580 . . . .

x e, bivariate Gaussian density

3 o

Inhomogeneity: offspring survive
according to probability

p(u) oc exp(Z(u)BT)

depending on covariates (independent
thinning).

33/99

Wide range of covariance models available for Y: exponential,
Gaussian, Matérn,...(Tilmann's course)

Cox processes "bridge” between point processes and geostatistics.

35/99

Cox processes

X is a Cox process driven by the random intensity function A if,
conditional on A = A, X is a Poisson process with intensity

function .

Example: log Gaussian Cox process ( “point process GLMM")

log A(u) = BZ(u)" + Y (u)

where {Y(u)} Gaussian random field.

BZ(u)"

Z: systematic varition Y: random clustering around peaks in Y

Shot-noise Cox

where

process

Au) = Z'yvk(u —v)

veC

» C homogeneous Poisson with intensity s
» k(-) probability density.

> =, iid positive random variables independent of C

NB: equivalent to cluster process with parents C, random cluster

size v, and dispersal density k.

Inhomogeneous

Inhomogeneous Thomas: inhomogeneous shot-noise with Gaussian

shot-noise:

A(u) = explBZ() ] 7uk(u = v)

veC

k(-) and v, = a > 0.

34/99
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Moments for Cox processes
Intensity function

p(u) = EA(u)
Second-order product density

o (u,v) = ENu)A(v) = Cov[A(u), A(V)] + p(u)p(v)

Cov[N(A), N(B)] = /A | EA(uMu+ /A /B Cov[A(u), A(v)]dudv

= [ otwnus [ [ oenlee.v) - 1duav

= Poisson variance + extra variance due to A

(overdispersion relative to a Poisson process)
37 /99

Specific models for cy(u — v) = Cov[Ag(u), Ao(V)]
Log-Gaussian:
No(u) = exp[ Y (u)]

where Y Gaussian field.

Covariance (Laplace transform of normal distribution):
co(h) = exp[Cov(Y(u), Y(u+ h))] -1

Shot-noise:

No(u) = Z'yvk(u —v)

veC

Covariance (convolution):
co(u—v)= /faz/ k(u)k(u + h)du
R2

(e =E~,)

39/99

Log-linear model

Both log Gaussian and shot-noise Cox process of the form
N(u) = No(u) exp[BZ(u)"]

where Ag stationary non-negative reference process.

(interpretation: Cox process X independent inhomogeneous
thinning of stationary Xo with random intensity function Ag).

Log-linear intensity (assume EAg(u) = 1)

plu) = EA(u) = exp[3Z(u)"]

Pair correlation function (EAg(u) = 1):

g(h) =14 co(h) co(h) = Cov[Ao(u), Ao(u + h)]

normal-variance mixture Cox/cluster processes
Suppose kernel k(-) given by variance-gamma density.

Y variance-gamma if Y = vV WU where W ~ T and U ~ N,(0,/)
= closed under convolution.

Then Matérn covariance function:

co(h) = ag(||”||/;73jf<ru((yll)hl|/n)

Suppose k() Cauchy density

1
2mw?

k(u) = [L+ (lull/w)?)] %2

(normal with inverse-gamma variance) then

co(r) = ag[1+ (|Irll/m)?1 7>/
Cauchy too (03 = k€2/(2mn)? 1 = 2w)

38
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Density of a Cox process

v

v

v

v

Restricted to a bounded region W, the density is

f(x) = E |exp <|W—/W/\(u)du>

Not on closed form

likelihood-based inference: MCMC or Laplace approximation

(INLA for log Gaussian Cox processes)

estimating equations based on closed form expressions for

intensity and pair correlation

[T AW

ueX

4. The conditional intensity and Markov point processes

41/99
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Exercises

1. For a Cox process with random intensity function A, show that

p(u) = EA(u),

PP (u,v) = EN(u)A(V)]

2. Show that a cluster process with Poisson(a) number of iid
offspring is a Cox process with random intensity function

Au) = az k(u—v)

veC

(using notation from previous slide on cluster processes. Hint:
use void probability characterisation and superposition result

for Poisson process)

3. Compute the intensity and second-order product density for an
inhomogeneous Thomas process. (Hint: interpret the Thomas
process as a Cox process and use the Campbell formula)

4. Show that pair correlation for LCGP is

g(u,v) = exp[Cov(Y(u), Y(v))

Mucous membrane cells

Centres of cells in mucous membrane:

]
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Repulsion due to physical
extent of cells

Inhomogeneity - lower
intensity in upper part

Bivariate - two types of
cells

Same type of

inhomogeneity for two
types ?
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Density with respect to a Poisson process Example: Strauss process

For a point configuration x on a bounded region S, let n(x) and
s(x) denote the number of points and number of (unordered) pairs

of R-close points (R > 0).
X on bounded S has density f with respect to unit rate Poisson Y

if A Strauss process X on S has density
P(X € F) = E(1[Y € FIF(Y)) Fx) = - exp(3n(x) + Ys(x))
:i e;‘!s‘ /s" lx € FIf(x)dxy...dxn (x={x1,...,xn}) with respect to a unit rate Poisson process Y on S and
n=0
¢ =Eexp(8n(Y) + ¢s(Y)) ()

is the normalizing constant (unknown).

Note: only well-defined (¢ < c0) if ¢ < 0.
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Intensity and conditional intensity Density and conditional intensity - factorization

Suppose X has hereditary density f with respect to Y:
f(x)>0=f(y) >0,y Cx

Intensity function p(u) = Ef(Y U {u}) usually unknown (except for
Poisson and Cox/Cluster).
One-to-one correspondence between density and conditional

Instead consider conditional intensity intensity (up to normalizing constant)

g = 11D n
(does not depend on normalizing constant !) F(ba, ) = £(0) iI:[l)\(Xh by xica)
Note
p(u) =EF(Y U{u}) =E[Xu, Y)F(Y)] = EX(u, X)
and
p(u)dA = P(X has a point in A) = EP(X has a point in A|JX\A),uec A

Hence, A(u, X)dA probability that X has point in very small region
A given X outside A.

47 /99 48 /99



Markov point processes

Def: suppose that f hereditary and A(u, x) only depends on x
through x N b(u, R) for some R > 0 (local Markov property). Then
f is Markov with respect to the R-close neighbourhood relation.

Thm (Hammersley-Clifford) The following are equivalent.
1. f is Markov.
2.

F(x) = [T o(y)

yEx

where ¢(y) = 1 whenever ||u — v|| > R for some u,v € y.
Pairwise interaction process. ¢(y) = 1 whenever n(y) > 2.

NB: in H-C, R-close neighbourhood relation can be replaced by an
arbitrary symmetric relation between pairs of points.

49 /99

Some examples

Strauss (pairwise interaction):

Mo,x) = exp (346 S 1llu-vl| < RD), £(x) = - exp (Bn(x)+¥s())

vEeX

Overlap process (pairwise interaction marked point process):

M(om) ) = e (B 3 |b(um)nb(u,m)) (v <0)

(u’,m")ex

where x = {(uy,m), ..., (us, my)} and (u;, m;) € R? x [a, b].
Area-interaction process:
) = 2 exp (n00+9V(), Awrx) = exp (F+(V({u}Ux) - V()

V(x) = | Uyex b(u, R/2)| is area of union of balls b(u, R/2), u € x.

NB: ¢(-) complicated for area-interaction process.

51/99

Modelling the conditional intensity function

Suppose we specify a model for the conditional intensity. Two
questions:

1. does there exist a density f with the specified conditional
intensity ?
2. is f well-defined (integrable) ?

Solution:

1. find f by identifying interaction potentials
(Hammersley-Clifford) or guess f.

2. sufficient condition (local stability): A(u,x) < K
NB some Markov point processes have interactions of any order in
which case H-C theorem is less useful (e.g. area-interaction

process).

50/99

The Georgii-Nguyen-Zessin formula (‘Law of total
probability’)

EZ k(u,X\{u}) = /SIE[)\(U,X)k(u,X)]du = /SE![k(u,X) | u]p(u) du

ueX

E'[- | u]: expectation with respect to the conditional distribution of
X\ {u} given u € X (reduced Palm distribution)

Density of reduced Palm distribution:

f(x|u) = f(x U {u})/p(u)

NB: GNZ formula holds in general setting for point process on RY.
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The spatial Markov property and edge correction

Let B C S and assume X Markov *
with interaction radius R. :

Define: 0B points in S\ B of L ;
distance less than R +

Factorization (Hammersley-Clifford):

f=JI o JI

yCxN(BUOB) yCx\B:
ynS\(BUOB)#0

Hence, conditional density of X N B given X \ B

fe(zly) o< f(zUy)

depends on y only through 9B NYy.
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Exercises

1. Suppose that S contains a disc of radius € < R/2. Show that
(2) is not finite, and hence the Strauss process not
well-defined, when 1) is positive.

(Hint: 00 0 T exp(n + ¢hn(n — 1)/2) = oo if ¢ > 0.)

2. Show that local stability for a spatial point process density
ensures integrability. Verify that the area-interaction process
is locally stable.

3. what is the unnormalized density of a Strauss (/3,) with
respect to a Poisson process of intensity exp(5) ?

4. Starting with the conditional intensity for a Strauss process,
identify the potential function ¢

5. (if time) Verify the Georgii-Nguyen-Zessin formula for a finite
point process.

(Hint: consider first the case of a finite Poisson-process Y in
which case the identity is known as the Slivnyak-Mecke
theorem, next apply Eg(X) = E[g(Y)f(Y)].)
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Edge correction using the border method
Suppose we observe x realization of X N W where W C S.

Problem: density (likelihood) fiv(x) = Ef(x U Ys\1) unknown.

Border method: base inference on
fWeR(X N W@R‘X N (W \ W@R))
i.e. conditional density of X N Wgr given X outside Wgpg.

+ S
+ +
”””” L
++ to +
+ :
s R . w
+
+

5. Estimating equations

54 /99
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Summary: Cox/cluster vs. Markov

| A(uX) | p(u) | GNZ | Campbell | interaction

Markov
Cox

yes no yes no
no yes no yes

Composite and pseudo-likelihood

Disjoint subdivision W = U ;G in

repulsive
clustering

‘cells” C;.

u; € C; ‘center’ point.

Random indicator variables:

Y; = 1[X has a point in (]

(presence/absence of points in C;).

P(Y; =1) = |Gilpo(uj) and P(Y; = 1|X\ Gj) =

Idea: form composite likelihoods based on Y;, e.g.

[IP0vi=1"@-pP(vi=1)

Consider limit when |C;| — 0.

|Gil Ao (ui, X)

57 /99
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Estimating function

Estimating function: e(6) [e(8, X)] function of # and data X.

Parameter estimate @ solution of

e(d)=0

0 unbiased E = 6* if e(f) unbiased Ee(6*) = 0 (6* true value).

Varfl = S71¥S™1 ¥ = Vare(6*)

where sensitivity:
d

minus expected derivative of e(6)

How do we construct unbiased estimating functions involving X
and 0 ?

Log composite likelihood (in fact log likelihood for Poisson):
> log pp(u) —/ pe(u)du

ueX w

Log pseudo-likelihood (Besag, 1977)

> log Ag(u, X\ ) —/ Ao(u, X)du

ueX w

Scores:

p@( ) /ng)(u)du

= ro(u)

(u, X ,
Z )\0 (@ xs /W Ap(u, X)du

unbiased estimating functions by Campbell/GNZ.

and

58
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Monte Carlo approximation

Let D ‘quadrature/dummy’ point process of intensity x and
independent of X.

Issue: By GNZ

> integrals
p(u)du an o(u u "(u y— S N(u X\ )
/ng( Ydu and /W p(u, X)d /)\ X)du=E ) EX ) h

ueXuUD
often not explicitly computable.

Numerical quadrature may introduce bias. By Campbell

/p(u)du—]E Z +K

uEXUD

Idea: replace integrals in pseudo- or composite likelihood with
unbiased estimates using D.
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Approximate pseudo- and composite likelihood scores:

(u, X\ u u, X
s(0) = ZAQUXE) 2 Agz(X\\)) )

ue(XuD)

Dummy point process

Should be easy to simulate and mathematically tractable.

) — S Poly) pp(u)
)= ;X po(u) Z ®)

Possibilities: po(u) + kK
Stratified: u€(XUD)
Note: of logistic regression/case control form with ‘probabilities’
1. Poisson process . i A X
NN - 1 . p(uX) = M
2. binomial point process (fixed number N No(u, X\ u) +
of independent points) d
. an
3. stratified binomial point process . () po(u)
+ + p =
po(u) + K

l.e. probabilities that u € X given u € XU D.

Hence computations straightforward with glm() software !
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Example: mucous membrane Fitted polynomials

86 (type 1) + 807 (type Fitted polynomials (with
2) points. confidence intervals for selected
y values):

1 x 0.7 observation

window. =R
Marked point u = (x,y, m) where m =1 or 2 (two types of Polyn9m|als sngn.lfllcan.tly.dlfferent
points). R l according to logistic likelihood

\ ratio test (parametric bootstrap).

Bivariate Strauss point process with [{{%

05

Ao(u, X) = exp[gmo(y) + ¥nr(u, X))

Gm,0(y): polynomial in spatial y-coordinate. \\\F\;\\\

ng(u, X): number of neighbors within range R = 0.008. S

0.0
I

3600 stratified dummy points (random marks 1 or 2).
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Decomposition of variance

v 3600 14400
Issue: X inhomogeneous estm. sd sdp inc. (%) sd sdp inc. (%)
_ q(01) 6004 0195 0.189  3.608  0.191 0.189  0.812
Am(u) = explam(y)IE exp[¥n(u, X)] @(0.3) 4528 0267 0263 1332 0264 0263  0.301
ensity function not orobortional to | nomial function q(0.5)  3.994 0406 0.404 0555  0.404 0404  0.146
S0 intensity function hot proportional to fog pofyhomial function. @(0.1)  7.800 0.091 0.078 15623  0.082 0079  3.801
. o o . @(0.3) 7204 0083 0075 10923  0.076 0.075  2.589
Baddeley and Nair (2012): approximation of intensity functions for 42(0.5) 7.123 0.086 0.077 10.558 0.080 0.078 2.824
Gibbs point processes ) —2.594 0.344 0.341 0.971 0.342 0.341 0.197

sdp =~ standard deviation for pseudo-likelihood without
approximation.
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Example: rain forest trees

Capparis Frondosa Potassium content in soil.

- )

Loncocharpus Heptaphyllus Covariates pH, elevation,

gradient, potassium,...

s LR

L

Clustered point patterns: Cox point process natural model.
Objective: infer regression model pg(u) = exp[BZ(u)']

Composite likelihood targeted at estimating intensity function.
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Another issue: optimality ?
Composite likelihood score

) [
2w /W p(u)du

ueX

optimal for Poisson (likelihood).

Which f makes

er(9) = > 1)~ [

f(u)pp(u)du
ueX w

optimal for Cox point process (positive dependence between
points) 7
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Problem: covariates sampled on (coarse) deterministic grid.
Plots shown: interpolated values of covariates.
Hence unbiased Monte Carlo approximation not applicable.

For now: integral in log composite likelihood

> togps(w) — [ paludu

ueX w

approximated using numerical quadrature based on interpolated
values.

Need to convince biologists to use random sampling designs.

Optimal first-order estimating equation

Optimal choice of f: smallest variance
Var,@A = V= SflszFI

where

Sp = fIE%ef(ﬁ) Y ¢ = Varer(p)

Possible to obtain optimal f as solution of certain Fredholm
integral equation.

Numerical solution of integral equation leads to estimating
function of quasi-likelihood type.

70/99
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Quasi-likelihood

Integral equation approximated using
Riemann sum dividing W into cells C;
with representative points u;.

Resulting estimating function is quasi-likelihood
(Y —mVv~'D
based on
Y=(Y,...,Ym), Yi=1[X has pointin C].

4 mean of Y:
pi =EY; = ps(u;)| G| and D = [dp(u;)/dBi],

V' covariance of Y (involves covariance of random intensity):
Vij = Cov[Y}, Yj] = pilli = j] + pinjlg(ui, uj) — 1]
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Estimation of pair correlation function

Suppose parametric model g(+; ) for pair correlation.

Some options:

1. minimum contrast estimation based on K-function.

2. second-order composite likelihood: composite likelihood based
on indicators for joint occurrence of points in pairs of cells:

Xijj = 1[N; > 0 and N; > 0]

Po,u(Xy =1) = p®(u, v; B,9)|CilI G|
= pp(ui)ps(vi)g(ui — uj; )| Gl Gl
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Results with composite likelihood and quasi-likelihood

species E
cL 049 —0.021Nmin — 0.11P — 0.50pH — 0.11twi
Loncocharpus (81.06*,7.45%,58.78,282.89*, 53.19*) x 1073
aL —6.49 — 0.023Nmin — 0.12P — 0.55pH — 0.084twi
(80.15%,6.95%, 55.23*, 266.10%, 45.47) x 1073
cL —5.07 + 0.028ele — 1.10grad + 0.0043K
Capparis (79.54*,9.98*,1200.36,1.16*) x 1073
QL —5.10 + 0.019ele — 2.50grad + 0.0039K
(77.77,8.86%,935.02*,1.02*) x 1073

Estimated standard errors always smallest for QL. Covariate grad
significant according to QL but not for CL.
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Minimum contrast estimation for v
Computationally easy alternative if X second-order reweighted
stationary so that K-function well-defined.

Estimate of K-function:

- 1o < flu—v] <t
K = u,v
A= 2w

Unbiased if 3 ‘true’ regression parameter.

Minimum contrast estimation: minimize
squared distance between theoretical K
and K: .

(U

¢ = argmin /Or(A/@(t)fK(t;w)fdt g
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Second-order composite likelihood

Second-order composite likelihood (given 3)

+

CL@lB)y= ] PPu viB1)x
u,veXNW
lu—vl<R

- 2 . B,)dud
ool [[ A viBaua

NB: second-order reweighted stationarity (translation invariant pair
correlation) not required.
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Two-step estimation

Obtain estimates (j3,) in two steps

1. obtain B using composite likelihood

2. obtain ¢ using minimum contrast/second order composite
likelihood
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Fitted pair correlation functions g(-) for Capparis and

Loncocharpus

Use shot-noise Cox process with dispersal kernel given by
variance-gamma density.

Then g(h) — 1 Matérn covariance function depending on
smoothness/shape parameter v.

Loncocharpus:
Matérn v = 0.5

a(h)-1
I

Capparis:
Matérn v = 0.25

Asymptotic results - first order estimating function

"

Divide R? into quadratic cells ¥ .
AU:[I,I-F].[XL/,j-i-].[ .’41-’
Then
er(8) = Ujj
1y A,'ng
where

U= 3 fﬁ(u)_/A 3(u)ps(u)du

UEXNAj i

Assuming X is mixing, {U;}; mixing random field and
|W| ™26 (8) ~ N(0, %)

(CLT for mixing random field {U;;};).
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Asymptotic results cntd. Alternative: “infill” /increasing intensity-asymptotics

Estimate 3 solves

er(8) =0
And (Taylor) If X infinitely divisible (e.g. Poisson or Poisson-cluster) then
R R X =U", X, where X; iid and intensity of X is pg(u) = nj(u; B)
er(B8) ~ |W[(B - B)Sr & (B — B) = |W| "er(8)S; where j3 intensity of X;
where d - ~
S¢ = ~Eggrer(5)/|W er(8) = Z} [ ; fi(u) — /W fs(u)p(u; B)du
i= ueX;

It follows that Ordinary CLT applies.

B~ N(B, Ve /|W])

where
Ve = S, 1EeS
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Exercises

1. Check using the GNZ formula, that the score of the
pseudo-likelihood is an unbiased estimating function.

2. show that the approximate pseudo- and composite likelihood
scores (3) and (4) are of logistic regression score form when
the intensity or conditional intensity is log linear

3. Check that the derivative of minimum contrast criterion and
the score of the second order composite likelihood function
are unbiased estimating functions when S is equal to the true
value.

4. Derive the second-order product density of a stratified

binomial point process with one point in each cell. o _ -
" . . 6. Likelihood-based inference and MCMC (if time allows)
5. How can you partition a Poisson-cluster process X into a

union U?_; X; of iid Poisson-cluster processes ?
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Maximum likelihood inference for point processes Importance sampling

Importance sampling: 6y fixed reference parameter:

Concentrate on point processes specified by unnormalized density c(6)
hy(x), 1(0) = log hy(x) — log <(60)
fo(x —— hg(x
o(x) = ( j o(x) and
() _ g ho(X)
- 0
Problem: ¢(6) in general unknown = unknown log likelihood <(%o) hay(X)
Hence
1(6) = log hy(x) — log c(f) Z he(X")
C(9o) hg,(X7)
where X% X1, ..., sample from f5, (later).
85/99 86 /99
Exponential family case Path sampling (exp. family case)
Derivative of cumulant transform:
ho(x) = exp(t(x)0"
(x) = exp(t(x)07) LR R,
do = ¢(6o)

Hence, by integrating over differentiable path 6(t) (e.g. line)

— T_
1(6) = t(x)0" — log c(0) linking 8o and 6y:

c(61) do(s)T ds

1
lo = Eg(s)[t(X
c((;)) = Eg, exp(t(X)(0 — 60)") gc(eo) /O o(s) [E(X)] P
c(vo

Approximate Ey(5)t(X) by Monte Carlo and fol by numerical

Caveat: unless 6 — fp ‘small’, exp(t(X)(8 — 0o)7) has very large quadrature (e.g. trapezoidal rule).

variance in many cases (e.g. Strauss). . .
y (eg ) NB Monte Carlo approximation on log scale more stable.
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Maximisation of likelihood (exp. family case) MCMC simulation of spatial point processes
Birth-death Metropolis-Hastings algorithm for generating ergodic
Score and observed information: sample X, X1, ... from locally stable density f on S:

Suppose current state is X/, i > 0.
1. Either: with probability 1/2
> (birth) generate new point u uniformly on S and accept
XProp = X7 U {u} with probability

u(8) = t(x) ~ Egt(X), j(8) = Vargt(X),

Newton-Rahpson iterations:

O™ = 0™+ u(0m)j(0m) gy XU {u))S|
min {1, S50 1 1) )
or
Monte Carlo approximation of score and observed information: use > (death) select uniformly a point u € X' and accept
importance sampling formula Xprop = X'\ {u} with probability
. FX\ {u})n
Egk(X) = Eq, {k(X) exp (t(X)(0 - GO)T)} /(co/co,) min {1’ (XS] }

(if X' = 0 do nothing)

with k(X) given by t(X) or t(X)Tt(X). . | |
2. if accept X' = XP™°P; otherwise X' = X'.
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Missing data

Initial state Xo: arbitrary (e.g. empty or simulation from Poisson

process). Suppose we observe x realization of X N W where W C S.
Note: Metropolis-Hastings ratio does not depend on normalizing Problem: likelihood (density of X N W)
constant: )

F(XTU{u})[S| _ A(u.X7) |S| fwa(x) = Efy(x N Ys\w)

F(X)(n+1) T (n+1) o : :
not known - not even up to proportionality ! (Y unit rate Poisson
onS

Generated Markov chain Xg, X1, ... irreducible and aperiodic and )
hence ergodic: = S0 k(X') — Ek(X)) Possibilities:

» Monte Carlo methods for missing data.

» Conditional likelihood
1 m—1 )
V(= 7 k(X') ~ EK(X)) = N(0, %) o m0(X 1 Wiglx 1 (W \ Weg)) o exp(t(x)0T)
i=0

(note: x N (W \ WgRg) fixed in t(x))

Moreover, geometrically ergodic and CLT:
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Likelihood-based inference for Cox/Cluster processes

Consider Cox/cluster process X with random intensity function

ANu) =« Z f(m,u)

meM

observed within W (M Poisson with intensity k).

Assume f(m, ) of bounded support and choose bounded W so that

Au) =« Z f(m,u)

meMnW

forue W

(XN W,MnN W) finite point process with density:

mnmﬂ):fmummqmﬁ):dMU%mWWdWFMMWMIIM@

uex

93 /99

Maximum likelihood estimation for log Gaussian Cox

processes
Likelihood (probability density) for Cox process given observed
point pattern x:

f3(x) = Eqlexp(— /W Aw)do) T Aw)]

Problem for Monte Carlo approximation: A = {A(u)}yew infinitely
dimensional quantity.

LCGP: approximate inference by
discretizing random field
Nu) = exp(BZ(u)" + Y (u))

Counts N; Poisson with mean

exp(BZ(ui)" + Y (u;))|Cil

(Poisson GLMM)
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Likelihood

f(x,MN W;0)

L(0) = E¢f(x|M) = L(ﬂoﬂEeo[;f;‘;ﬁ}:(ﬁvfggj

XﬂW:4

+ derivatives can be estimated using importance sampling/MCMC
- however more difficult than for Markov point processes.

Bayesian inference: introduce prior p(#) and sample posterior
p(0, m|x) o< f(x,m;0)p(6)

(data augmentation) using birth-death MCMC.

Computations: MCMCHFFT or INLA (Laplace approximations
using Markov random fields for Gaussian field).
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Exercises

1. Check the importance sampling formulas

k(%) = Eay (KO0 CL o)
e © WX
c0) 9
(o) " hyy(X) ®)
2. Show that the formula
g, [SEMOWO) |
L(6)/L(00) = Eo, | oM | XMW= ]

follows from (5) by interpreting L(6) as the normalizing
constant of f(m|x; #)  f(x,m;0).
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Solution: invariance of g (and K) under thinning
Since Xihin = {uv € X : R(u) < p(u)},
+
E Y 1ueAveB]

u,vEXthin

#
=E Y 1[R(u) < p(u

R(v) < p(v),ue A,v € B]

u,veX
#
=EE[ Y 1[R(v) < p(u), R(v) < p(v),u € A,v € B]|X]
u,veX
=K Z V)l[u e A v € B]
u,veX

- /A /B p(u)p(v)p® (u, v)dudv
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Solution: second order product density for Poisson

#
E > 1uecAveb]

u,veX
—u(AUB)
726 / Zl[ueAveB]pr,dxl .dx,
(AUB)" u,veX
—up(AUB)
:Ze <>/ / 1[x1€Ax2€B]pr,dx1...
p— AUB)? J(AUB)"
e—H(AUB) o
= Z WN(A) n(B)u(AU B)
n=2

“u(A(B) = [ plu)o(v)auay
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